
Change Impact Graphs: Determining the Impact of Prior Code Changes

Daniel M. German∗

dmg@uvic.ca
Dept. of Computer Science

University of Victoria, Canada

Ahmed E. Hassan

ahmed@cs.queensu.ca

Queen’s University, Canada

Gregorio Robles

gregorio.robles@urjc.es
Universidad Rey Juan Carlos, Spain

Abstract

The source code of a software system is in constant change. The impact of these changes spreads out across the software system and
may lead to the sudden manifestation of failures in unchanged parts. To help developers fix such failures, we propose a method that,
in a pre-processing stage, analyzes prior code changes to determine what functions have been modified. Next, given a particular
period of time in the past, the functions changed during that period are propagated throughout the rest of the system using the
dependence graph of the system. This information is visualized using Change Impact Graphs (CIGs). Through a case study based
on the Apache Web Server, we demonstrate the benefit of using CIGs to investigate several real defects.

1. Introduction

All too often when maintaining a large software system, a
bug report is submitted regarding changes in the behavior of an
unchanged functionality. Investigating this type of bug reports
is difficult and tedious, since the fix is frequently in a different
location than where the failure manifests itself, i.e., the location
specified in the bug report. The failing behavior is usually due
to the ripple effect of another change in a different part of the
system that propagates along various dependencies, such as call
and data dependencies, and affects the unchanged code.

The maintainer in charge of fixing such failures starts her
investigation with the location where the failure manifests it-
self. She then examines the dependency graph of the reported
failing function in an ad-hoc manner using her knowledge and
her experience about the software system trying to pin-down
the actual location of the bug causing the failure. A maintainer
could use slicing techniques [1, 2] to determine all the code
locations which may affect the reported location of a failure
and are likely the source of the bug causing the failure. How-
ever, slicing techniques are known to report large slices [3, 4]
and are often limited to small to medium software systems [5].
A single slice may contain as much as as 30% of the source
code of an application. Maintainers would spend considerable
time investigating such large slices for complex real-life soft-
ware systems. Approaches, such as dynamic slicing [6, 7], have

∗Corresponding author

been proposed in literature to reduce the size of slices and make
them more accurate for large software systems. However most
techniques require additional effort (e.g., execution of tests for
dynamic slicing) and expensive analyses.

In this paper, we propose a method which determines the
impact of historical code changes on a particular code segment
(e.g., a function). Given the reported location of a failure, a
maintainer wants to know of any recent code changes which
could have impacted the functionality of the failing function—
specially if that function was not changed recently. Our method
determines all the changed areas of the software system which
affect the reported location of a failure. The method then an-
notates these parts by marking recent code changes and prop-
agating the impact of these recent changes. It then creates a
change impact graph to determine what areas might have been
affected by certain changes to help maintainers rapidly pinpoint
the source of a bug given the reported location of a failure. The
maintainer needs to only examine the marked up functions in-
stead of going through all the functions which would be pro-
duced by a slicing technique. Our method should be seen as a
time saving complement to slicing techniques, as it is a way of
filtering slices.

We demonstrate the feasibility and possibilities of our method
through an exploratory case study based on several real bug re-
ports from the Apache Web Server. Through the bug reports, we
demonstrate the benefit of using our method to investigate the
reported failures and fix the corresponding bugs by non-experts.

Preprint submitted to Elsevier March 16, 2009

Organization of the Paper

The remainder of the paper is organized as follows: the next
section introduces our model for tracking the impact of histori-
cal code changes. Section 3 presents a methodology to analyze
historical code changes and recover their impact on source code
entities (i.e., functions). Section 4 presents an exploratory case
study in which we use this methodology to pinpoint the changes
that created four real bugs from the Apache Web Server. Sec-
tion 6 discusses the effectiveness, limitations, and possible im-
provements for our method. Section 7 concludes the paper.

2. A model to track the impact of historical code changes

Historical changes to a function can be modeled as a se-
quence, where each element corresponds to the source code
of the function after each particular change. Formally, for a
function f we define its change history sequence as Hf =
〈f0, ..., fm〉, where fi is the ith instance of the function. Each
instance of a function, can be annotated with metadata about
the change such as its data, its purpose and the name of the
developer who performed the change.

The dependence graph of a function f , G(f), is modeled as
a directed graph. Its nodes are the functions that are reachable
from f and its edges are the direct calls between any of these
functions. If a function g is called from function f , the de-
pendence graph of f contains the dependence graph of g. The
dependence graph can be considered a simplified interprocedu-
ral dependence graph that only tracks function invocation and
does not track in or out parameters nor variables. The depen-
dence graph of f includes any function that could be called by
f . When a developer peruses the source code of a function f ,
she is not usually aware of all the contents (or the size) of this
dependence graph. She is only aware of the edges that start in
f (the function calls inside f).

The dependence graph of a function f can be created at
any time t (during the life of such a function). The graph is
built recursively as described above, using the latest instance of
every one of all the functions in the graph such that their date of
modification is less or equal to t. In other words, if we want to
build the dependency graph of f on Dec. 31, 2007, then we will
use the latest instance of f with a date less or equal to Dec. 31,
2007. If it calls a function g then we will use the latest instance
of g with a date less or equal to Dec. 31, 2007. This process
continues until the dependence graph is completed.

The dependence graph of a software system is the union of
the dependence graphs of all its functions.

We illustrate our model with a simple example. Assume a
C source file that has had four changes recorded as depicted
in Figure 1. The change history for its functions is shown in
Figure 2. The change history tracks when the functions are
added, deleted or modified.

2.1. Propagation of prior changes

A typical use-case involves a developer who is perusing the
source code of function f at time t, and who is interested to

C0 C1 C2 C3
void a() {
b();

c();

d();

}

void b() {
e();

}

void c() {
var2=1;

}

int d() {
return 0;

}

int e() {
f();

}

int f() {
var1=0;

}

void a() {
b();

c();

d();

}

void b() {
e();

}

void c() {
var2=1;

}

int d() {
exit(1);

}

int e() {
f();

}

int f() {
var1=0;

}

void a() {
b();

c();

d();

}

void b() {
e();

}

void c() {
var2=1;

}

int d() {
exit(1);

}

int e() {
return 0;

}

void a() {
b();

c();

d();

}

void b() {
e();

}

void c() {
var1=5;

}

int d() {
exit(1);

}

int e() {
return 0;

}

Figure 1: Evolution of the source code of an example system after four different
changes (C0, ...C3). The areas affected by each change are shown in bold.

C0 C1 C2 C3

a A
b A
c A M
d A M
e A M
f A D

Figure 2: Depiction of the change history for the functions of the example
system. The rows correspond to the functions and the columns to the changes.
A, M , D are, respectively, Added, Modified and Deleted. exit is not included
because it is a C library function, external to the system being maintained.

know any changes that might have had an impact on the behav-
ior of f during a particular time window [tb, te] in the past. We

Figure 3: Dependence graph of a() immediately after change C3.

2

call this time window the period of interest. The period of inter-
est does not need to include changes up to time t. For example,
the graph can be created in December using a period of interest
that spans the previous April to May.

To determine the impact of prior changes on a particular
function f , the dependence graph of f is computed at time t
and its nodes are marked according to any changes during the
period of interest [tb, te] as follows:

1. Mark all nodes in G(f) as unaffected.

2. For each node g in G(f): if it has been added or changed
during [tb, te], then annotate it as changed.

3. Repeat until the dependence graph, being built, stops chang-
ing:

• for any node that is still unaffected, mark it as af-
fected if at least one of its successors is either changed
or affected.

CIGs can have cycles (the result of recursive calls). The
algorithm is guaranteed to terminate because it processes, for
every pass, each node once; and for each node it would need
to check at most each of its successors. The number of passes
will also be finite (at most equal to the number of nodes in the
graph).

Each node in the resulting dependence graph, which we call
a Change Impact Graph or CIG, is one of three types:

1. Unaffected. The function nor any of the functions it can
potentially call were affected by the changes.

2. Changed. The source code of the function has been changed.

3. Affected. The source code of the function has not changed,
but at least one of the functions it can potentially call has
changed.

Figure 4 shows the CIG for the example of Figure 1. The
GIC has been computed using the callgraph after change C3,
and its period of interest includes the changes C1 and C2. The
change to e() is propagated to b(), and then to a() (which is
also affected by the change to d()). The graphs shows that the
functionality of both a() and b() might have been affected by
these changes, but not the functionality of c().

2.2. Pruning CIGs

A typical problem of dependence graphs (and as conse-
quence CIGs) is that they may contain too many nodes. We
propose the following methods to prune them. Our goal is to
remove nodes that are not of interest.

2.2.1. Remove unaffected nodes
Once the CIG has been computed, we remove nodes that are

not affected. By reducing the number of nodes the rendering of
the CIG is typically simplified. Figure 5 shows our sample CIG
after it has been pruned in this manner.

Figure 4: Change Impact Graph of a() computed using the source code imme-
diately after C3 but only showing the propagation of the changes C1 and C2

(the period of interest includes only these two changes). Red depicts changed
functions, light blue corresponds to affected functions, and white to unaffected
(changed will appear darker than affected in black-and-white versions of these
images).

Figure 5: The CIG of Figure 4 with only affected and changed nodes.

2.2.2. Remove nodes outside the area of interest
Frequently a developer is only interested in a specific area

(e.g., a particular subsystem) of the codebase, and would like
to know only when this area has been changed, and affected by
changes outside it (this provides awareness that some change
outside this area might have affected the functionality in ques-
tion).

In other scenario the developer is certain that the defect is
located in a specific area. In such case she is not interested in
knowing any changes outside it, nor any functions that might
be affected by them.

To address these two issues we propose two variants to the
pruning of nodes outside an area of interest:

Prune-Before. The dependence graph is pruned before the im-
pact of the changes is computed. This method can be
summarized as follows: We start by computing the de-
pendence graph then removing the nodes outside the area
of interest. We compute the CIG using the resulting de-
pendence graph. The resulting CIG does not show the
effect of changes to areas outside the area of interest. A
Prune-Before CIG is exemplified in Figure 6. In this case
functions a(), b(), c(), and d() are the area of interest;
note how the impact of the change to e() is no longer
depicted in the CIG.

Prune-After. The CIG is pruned to remove nodes outside the
area of interest, yet the impact of such nodes will still
be depicted in the GIC. The method to prune the CIG is
simple: We start by computing the CIG, then we remove
the nodes outside the area of interest. A Pruned-After

3

Figure 6: The result of applying “prune-before” to the CIG of Figure 4. In
this example we assume that a(), b(), c() and d() are the area of interest; e is
removed before the CIG is computed. The resulting CIG does not depict the
impact of the change to e.

Figure 7: The result of applying “prune-after” to the CIG of Figure 4. Like
Figure 6, a(), b(), c() and d() are the area of interest. Nodes outside the region
of interest (in this case e) are removed after the CIG has been computed. The
effect of the change to e() is still shown in b()–which appears as affected.

CIG is exemplified in Figure 5. Like Figure 7 a(), b(), c()
and d() are the area of interest. In this case the change to
e is propagated to its caller b() before e() is removed from
the graph. This CIG shows that b() has been affected by
a change (even if we do not know what prompted such
change).

Both prune-before and prune-after CIGs can have their un-
affected nodes removed, resulting in a CIG that shows only
changed and affected nodes within the area of interest.

2.3. Annotating CIGs

The nodes of the CIGs can be annotated using visual at-
tributes, such as size, colour, shape, and textual information.
These visual attributes are used to highlight specific properties
of the changed and affected nodes. For example, the bright-
ness of the node can show how old the change is with paler
nodes representing newer nodes, and brighter nodes represent-
ing more recent ones. The size of the node can correspond to
the number of times it has been changed, or different colours
can be used to depict changes by different developers.

2.4. Quantifying the impact of changes

We define two metrics to quantify the effect of the changes
during a period of interest: the ratio of changed functions and
the ratio of affected functions in the CIG of a function.

• The ratio of affected functions is the proportion of changed
and affected to the total nodes in a CIG (of a function or a
system). It provides an overview of the area impacted by
the changes. If a set of changes have a large ratio of af-
fected functions, then such changes have the potential to
affect the functionality of a large proportion of the func-
tions in the software system. Using our running example
shown in Figure 4, the ratio of affected functions is 4/5.

• The ratio of changed functions is the proportion of changed
nodes to the total nodes in a dependence graph. While the
ratio of affected functions gives the impact that changes
have in the software, the ratio of changed functions pro-
vides the number of functions that may be the origin of
the bug. This ratio gives an overview of the proportion of
changed functions. Using our running example shown in
Figure 4, the ratio of changed functions is 2/5.

In practice, the higher the ratio of affected functions is, the more
areas a failure-inducing change could affect. By computing the
ratio of affected functions of a potential change a developer
could assess the criticality of a change.

When a developer computes a CIG, she will want to mini-
mize the ratio of affected and changed functions. She will usu-
ally work with the current version of the source code, and spec-
ify a period of interest in the past. She will want to narrow
potential areas of the code that would have been affected dur-
ing such changes. The longer the historical period of interest,
the higher the ratio of changed functions, making this method
less effective. The major challenge when using a CIG is finding
a suitable period of interest such that the buggy change which
introduced the failure (or any other interesting functionality) is
within it, while minimizing the ratio of nodes (i.e., nodes) in
the CIG.

2.5. Annotating Source Code
Dependence graphs of real systems are usually complex and

difficult to read or visualize. We propose instead to annotate the
source code of any function with the help of CIGs. In its most
simple conception, each line of code will be tagged if it contains
a call to a function that is marked affected or changed. We
refer to this source code view as the impact-annotated source
code). Figure 8 shows the impact-annotated source code of our
running example after change C3, with the period of interest
comprising of changes C1 and C2. Using its corresponding CIG
(as depicted in Figure 4), the calls from a() to b() and d(), and
from b() to e(), have been coloured as affected; two statements
are coloured as changed. The colour scheme is the same as
the one used in the CIG: affected statements are shown in light
gray (Gray 71), and changed ones in dark gray (Gray 41). The
colouring of the source code gives awareness to the developer
of what was affected during the period of interest.

Let us assume that a failure was reported in a() after C2,
and that this failure did not exist before C1. In other words, the
failure is presumed to have been caused by a bug introduced
during changes C1 or C2 (or both). The developer will proba-
bly start by inspecting function a(). The call c() is not likely to
be the cause of the failure (it is not changed nor affected) and
could be ignored (or at least presumed to have a lower prob-
ability of being the location of the bug). On the other hand,
calls b() and d() are marked as affected, so it is worth exploring
both function b() and d() to see if the change to one of them
(or its successors) has introduced the bug. The goal of impact-
annotated source code is to guide the attention of the developer
towards the functions that are more likely to be responsible for
a failure.

4

void a() {
b()
c();
d()

}

void b() {
e();

}

void c() {
var1=5;

}

void d() {
exit(1);

}

void e() {
return 0;

}

Figure 8: Impact-annotated source code for our example system after change
C3 for a period of interest that includes changes C1 and C2. Dark gray state-
ments were changed during this period, and light gray ones were affected by
these changes. It can be seen that a was not changed during this period, but its
calls to b and d were affected because of the changes to d and e; meanwhile c
was not affected by changes during this period.

3. Recovering the impact of function evolution from a ver-
sion control system

In this section we present the implementation of the model
described in Section 2. We assume that the source code history
is stored in a version control system (such as subversion
or CVS). Although we discuss our implementation within the
scope of C, it is applicable to other (procedural) programming
languages.

3.1. Recovering the change histories of functions
We use the information recorded in the version control sys-

tem to compute the history of each function. Since version con-
trol systems track the evolution of a software system at the line
level, we must perform additional analysis and extraction to re-
cover the history of code changes at the function and depen-
dency levels. This process is illustrated in Figure 9.

From the version control system, we process the code after
each commit. We refer to a commit as a modification record–
MR. For each MR we use the tokenizer of ccfinder [8] to
compute and store a callgraph of the system. We then determine
the functions affected by this MR as follows:

Each MR consists of changes to zero or more source code
files, and results in a new instance (or version) for each of such
files. For each instance of each file in the MR we perform the
following operations;

Remove whitespace, comments and reformat. Sometimes a
change affects only whitespace or comments, and occa-
sionally it might affect a large number of functions. For
example, PostgreSQL reformats its source code on a reg-
ular basis [9]. We want to skip these edits because these
operations do not change the functionality of the code
for most programming languages except for some pro-
gramming languages such as Python which are indenta-
tion dependent. This processing ensures that regular re-
formatting of the source code would not result in many
false positives with the reformatting operation appear-
ing as changed functionality for those functions that have
been reformatted. The same holds for comments so we
ignore changes to comments as well.

Identify each function in the file. We use exuberant ctags1 to
identify the location where the definition of a function
starts. The end of a function is assumed to be the loca-
tion of the last closing brace before the next definition in
the file. When processing C source code we do not con-
sider macros as a definition, as macros can appear in the
middle of a C function.

Determine the type of operation on the function. We compare
each function against its previous instance. Each instance
of a function is tagged as either: unchanged (it wasn’t al-
tered), modified (it has changed), added (it did not exist
in the previous instance of the file).

Determine deleted functions. We tag any function that appears
in the previous instance of a file, and not in the new in-
stance of the file, as deleted during this MR.

We identify each function instance uniquely by its name,
the filename where it is found, and the MR id (according to the
version control system). This approach permits us to deal with
multiply-defined functions such as C static functions.

One major challenge is the detection of functions that have
been moved and/or refactored. It is interesting and valuable to
have a precise picture of the history of a function, but this anal-
ysis is not required for our method. Our main goal is to provide
awareness of changes, i.e., to know that the dependence graph
of a function has changed, not necessarily how it has changed.
Our method could be extended using one of several methods to
recover renaming and refactoring, such as the ones described
in [10, 11, 12]. We discuss this issue further in section 6.4.

We store in a historical database, the history of each func-
tion and metadata about each MR such as the list of changed
files and the name of the developer who performed the changes.

In summary, at this point we have retrieved and stored the
change history of each function ever present in the history of
the system: when it is added, when it is modified, and when it
is deleted. Information on the developers who have performed
these actions can be easily obtained and be stored as well, al-
though we do not consider it in our method. We have also com-
puted a callgraph of the system after each commit (MR) to the
version control system.

3.2. Creating the Change Impact Graph (CIG)

The process used to create a CIG is described in Figure 10.
In our method, when a developer is looking for a source of a
defect she knows (for instance, from a bug report) the function
where it appears, knows when the defect appeared (time b), and
has some idea of when the defect might have been introduced
(time a). The developer creates the CIG by providing three pa-
rameters: the function of interest f() (the root of the CIG), the
time t when the dependence should be computed (usually the
present), and a period of interest [a, b] (the CIG will show the
impact of changes after time a but before time b). The method
to create the CIG is as follows:

1http://ctags.sourceforge.net

5

Changes tracked

at line level

Map line changes for

each MR to function

level changes

Extract Dependence

Graph for system

at each MR

Version

Control

Recover all

Modification

Records (MRs)

MR1

MR2

MR3

Evolution

History DB

Figure 9: Process used to create the Evolution History Database.

MR changes

tracked at function

and

dependency level

Evolution

History DB

Generate CIG

for function of

interest

Annotate CIGPrune CIG

Pruned and

 Annotated

CIG of function

of Interest

Specifies

function and period

of interest

Specifies

area of interest

Provides

Annotation rules

StudiesReadsBug Report

Figure 10: Creating and using a CIG to fix a bug report.

1. Retrieve the dependence graph of the system at time t,
and from it compute the dependence graph of f().

2. If necessary, prune-before the dependence graph to re-
move nodes outside an area of interest (e.g. outside a
particular set of files).

3. Mark and propagate changes to functions in the depen-
dence graph of f() during period [a, b] using the algo-
rithms described in Section 2. The result is the desired
CIG.

4. If necessary, prune-after the CIG to remove nodes outside
an area of interest.

5. If necessary, annotate the CIG. This will facilitate the ex-
ploration of the CIG by marking nodes according to the
developer who made the changes.

We envision these four steps as iterative as a developer ex-
periments with different periods of interest, and with different
pruning and annotation methods until she finds the source of
the defect.

3.3. A method to create CIGs to fix defects
The creation of a CIG requires four parameters: the root

of the CIG, the date at which it is created, the period of inter-
est and, optionally, a pruning area. The effectiveness of CIGs
will depend on the good selection of them. The following are
guidelines to for their selection:

1. Find root of CGI. This corresponds to the function that is
exhibiting the error.

2. Determine date at which the CIG is created. This is usu-
ally the present. We believe developers are mostly in-

terested in inspecting current code (and its dependence
graph).

3. Determine a pruning area. Determine, if possible, a likely
area where the bug might exist. Knowing such an area re-
lies on many factors, such as the description of the defect,
and the experience and intuition of the developer.

4. Determine a period of interest. Sometimes a defect re-
port provides information that allows us to narrow its ap-
pearance to the days in which the defect was introduced.
This narrowing down process depends largely on the ex-
perience and knowledge of the developer. A tool that can
be used to assist in the narrowing down process is the
Change Impact Overview. This is a graph that plots the
accumulated number of changed functions per day, given
a starting date, as shown in Figure 11. In other words,
by choosing one date (usually the upper end of the period
of interest) one can observe the days in which functions
are—and are not—changed.

In practice identifying the location of a defect is an iterative
process. A developer will choose a starting point for the cre-
ation of the first CGI, and change parameters as she narrows
down the source of the defect.

4. Case Study

We performed a case study to investigate the possibilities
and limitations of our method. For our study, we used the
Apache Web Server version 1.3. We selected Apache for sev-
eral reasons: it is a large, complex and well-known software

6

system with a rich history and a large number of developers. In
addition, its defect tracking database and version control system
are publicly available.

Although version 1.3 is currently in its maintenance phase,
it is still widely in use. It has approximately 86 kSLOCs and
is mostly written in C. It has 8,021 commits (with 29,999 file
revisions). More information about Apache, its community and
its way of development can be found in [13]. We made a copy
of its subversion repository to avoid overloading Apache’s
servers.

To demonstrate the usefulness of our method, we needed
to identify historical code changes that resulted in the man-
ifestation of a failure in a different area of the software sys-
tem. We searched the source control system for description of
changes (the commit logs) which included the words “intro-
duced”, “bug” and “PR” followed by a number. Changes that
fix a bug in Apache usually include a reference to the bug in the
defect system using the following syntax: PR #<number>. We
located seven such changes. We selected the four most recent
changes. These changes fixed the following bug reports: PRs
#1352, #3130, #5389, #10090 and #10185. These reports are
depicted in Table 1.

PR #1352. This defect was reported in the cgi module on
Nov. 3, 1997. The person reporting the bug claimed that recent
changes in the log system had introduced it. We can summarize
the four main steps of our method as follows:

1. Find root of CGI. We use cgi handler(), the entry
point of the cgi module, where the bug is being reported.

2. Determine date at which the CIG is created. We use Nov
3, 1997, the day in which the defect was reported.

3. Determine a pruning area. If we assume that this change
is expected to be in the source code of the module—the
file mod cgi.c—we can prune the CIG to include only
functions in this file.

4. Determine a period of interest. This defect indicated
“that recent error log changes introduced a bug”. The
Change Impact Overview of cgi handler() is presented
in figure 11. The number of changed functions in the
complete CIG grows steadily over time. When the graph
is pruned the growth is significantly slower. Looking
at the Change Impact Overview, we note that the most
recent change that affects cgi handler() occurred on
day 27 (2 functions), then the impact of the change grows
again in day 97 (to 3 functions). If we assume that this
change is expected to be inside mod cgi.c then the de-
fect could not have been introduced during the last 27
days. Hence, our starting period of interest will be changes
made during the last 30 days.

Figure 12 shows the CIG of cgi handler(), computed on
Nov. 3, 1997, and including the changes during the last 30
days. As it can be seen, there have been a significant number
of changes on the entire CIG of cgi handler() during this
period. Figure 13 shows the corresponding pruned-after CIG.
Only 2 nodes were changed. Examining the two nodes, we
find that one of them was the source of the defect (the function
log scripterror()).

0 20 40 60 80 100

0
20

40
60

80
10

0

Number of days elapsed

N
um

be
r

ch
an

ge
d

fu
nc

tio
ns

Complete CIG
Pruned CIG

Change Impact Overview of CIG for PR#1352

Figure 11: Change Impact Overview of cgi handler() before Nov. 3,
1997. The number of changed functions that impact cgi handler()
grows steadily but the pruned CIG shows a very slow growth.

Figure 12: CIG of cgi handler on Nov. 3, 1997, showing the propagated
changes during the last 30 days.

Figure 13: CIG of cgi handler pruned-after, showing only changes inside
mod cgi.c on Nov. 3, 1997, representing the propagated changes during the
last 30 days.

7

Problem
Report

Date-
Reported

Category Main description

#1352 Nov 8 1997 mod cgi A coding issue in the mod cgi.c module prevents the proper display in
the error log file of the filename causing a specific error.

#3130 Oct 3 1998 mod autoindex Directories have size shown as “0k” instead of “-” in Fancy Heading.
#5389 Oct 29 1999 mod rewrite mod rewrite is *SEVERELY* broken by a one-character bug introduced

in version 1.148. The bug causes the next-to-last backref substitution to
never happen... if you only have one backref, the $1 disappears without
a trace!

#10090,
#10185

Mar 14 2002 mod rewrite rnd map type balancing broken; ReWriteMap MapType ’rnd’ not work-
ing.

Table 1: Latest four problem reports in Apache that were solved with a commit that included the following keywords: log, introduced and PR followed by a number.
The date reported, category and main description come from Apache’s GNATs defect system.

PR #3130. The PR #3130 documents a failure which affected
the mod autoindex module. We perform the following steps
as described in our method:

1. Find root of CGI. For this module, its main entry point
function is handle autoindex(), therefore we use this
function as the root of the CIG.

2. Determine date at which the CIG is created. We compute
the CIG for the date the defect was reported, Oct. 3.

3. Determine a pruning area. The defect (showing size “0k”
instead “-” for directories when listing the contents of
a directory) seems to be specific to this Apache module;
therefore, a good area to concentrate on is the source code
of the module—the file mod autoindex.c.

4. Determine a period of interest. The submitter of the re-
port claimed that the defect was not present in version
1.2.6 but occurred in every one of the 1.3.x versions.
Version 1.3.0 was released on June 1, 1998; this date
will become the upper limit of the period of interest (the
defect is known to be present at this date). The lower
limit (when the bug is introduced) is more difficult to
determine. Version 1.2.6 was developed in parallel to
1.3.x (1.2 was in maintenance mode while 1.3.x was be-
ing started). This meant that we could not use the date of
the release of 1.2.6 as a starting date for period of interest.
This defect could have been inserted early in the devel-
opment of versions 1.3.x The Change Impact Overview
of handle autoindex() is shown in Figure 14. There
is a remarkable growth in the number of changed func-
tions on day 50 (an increase of 75 functions). This was
surprising. We explored the version logs to find out why
so many functions had been changed and found the rea-
son: on April 11, 1998 there was a major renaming of
functions and variables in Apache2. Including this day
will result in a CIG that has most of its nodes marked as
changed.

2We do not currently deal with function renames; we consider the function
with the old name deleted and one added with the new name, and the function
that was modified –usually only a token replace to reflect the change in name
of the called function– changed; this is an area that needs further work.

0 20 40 60 80 100

0
20

40
60

80
10

0
12

0

Number of days elapsed

N
um

be
r

ch
an

ge
d

fu
nc

tio
ns

Complete CIG
Pruned CIG

Change Impact Overview of CIG for PR#3130

Figure 14: Change Impact Overview of handle autoindex() showing
the impact of changes older than June 1, 1998. As it can be observed, day 50
(April 11, 1998) had a sharp increase in changed functions (75 functions).

Figure 15 shows the CIG of handle autoindex() when
the changed of the last 100 days are considered; 89% of its
nodes are changed. We illustrate the use of annotations with
this graph in Figure 16. In this CIG, paler nodes depict older
changes (this information was extracted automatically from the
history of changes during the creation of the CIG). As it can
be seen, most changes show a pale red (most of them changed
during the rename), but many others are bright red (modified
after the rename).

Hence, to avoid the effect of the rename, we recomputed the
CIG with a period of interest between April 12 and June 1, 1998
(49 days). The corresponding CIG is shown in Figure 17. There
is still a significant number of changed functions during this
period. However, we pruned-before the graph to include only
the impact of functions inside the source code of this module
(file mod autoindex.c) As it can be seen in Figure 14, only
two functions have been changed during this period. The CIG
for this period is show in Figure 18. It shows the two functions

8

Figure 15: CIG of handle autoindex (depicted as a circle) on Oct 3,
1998 showing the propagated changes for the last 100 days. Almost all nodes
have been changed! Looking at the logs the answer is clear: a commit on April
11, 1998 reads ”THE BIG SYMBOL RENAMING FOR APACHE 1.3”. This
illustrates the main limitation of CIGs: if too many functions change most of
the graph is annotated.

Figure 16: CIG of Figure 15. It has been annotated to show the age of the last
change: paler red nodes were modified less recently.

inside mod autoindex.c that were changed during the period
of interest (April 12 to Jun 1, 1998). The change to one of them
(make autoindex entry) introduced this defect. We created
and pruned four CIGs during the investigation of this bug. The
function that is the source of the defect is marked in all four
CIGs.

PR #5389. As before, we start by estimating the basic param-
eters for the CIG.

1. Find root of CGI. The module mod rewrite contains
three functions that are entry points to the module. Of

Figure 17: CIG of handle autoindex on Oct 3, 1998 showing the prop-
agated changes from April 12 to Jun 1, 1998.

Figure 18: The pruned-before CIG of handle autoindex on Oct
3, 1998 showing the propagated changes from April 12 to Jun 1, 1998.
The CIG has been pruned to include only the impact of functions in-
side mod autoindex.c (where this Apache module is implemented).
The defect was found in one of the two functions marked as changed
(make autoindex entry).

them hook uri2file() appears to the only one rele-
vant as the one where the defect appears. We will use
this function as the root of the CIG.

2. Determine date at which the CIG is created. We com-
pute the CIG for the date the defect was reported, Oct 29,
1999.

3. Determine a pruning area. This defect appears to af-
fect only the mod rewrite module. We will prune the
graph to include only functions in the file that contains it:
mod rewrite.c.

4. Determine a period of interest. The defect report in-
dicated that the bug was introduced in revision 1.149,
which was performed in Oct 27, 1999. We will con-
sider only changes until Oct 27, 1999 (inclusive). The
Change Impact Overview of this CIG shows that on day
7 there were some changes that affected a large number of
functions (an increase in 13 changed functions that day).
On the other hand, during the first 5 days only functions
within the module’s source code have been changed (i.e.,
the number of changed functions in the pruned area is
the same as in the complete graph). For the sake of il-
lustrating CIGs we will consider changes during the pe-
riod of Oct 22 to Oct 27, 1999 (four functions changed in
mod rewrite.c plus one changed somewhere else.

Figure 20 shows the CIG of hook uri2file(), computed
on Oct. 29, 1999, and including changes from Oct 22 to Oct
27, 1999. As expected, there are only five functions changed in
the system that affect hook uri2file (which had changed as
well). One of the these functions, ap write—the red node lo-
cated at the right of the graph—propagates through a large pro-
portion of the graph. Figure 21 shows the pruned-after CIG of
handle autoindex showing only functions inside its Apache
module (mod autoindex.c); this CIG shows the impact of the
changes to ap write, even when its node is no longer present.
This defect was found to be inside one of the functions marked
as changed: the function expand backref inbuffer had large
sections rewritten on Oct 27.

PRs #10090 and #10185. These two bug reports documented
a failure that affected the rewrite module. Again, we follow the
steps of our method to create the CIGs:

1. Find root of CGI. Because the defect appears in the same
module as #5389, and using the same rational, we use the
function hook uri2file() as the root of the CIG, .

9

0 5 10 15 20 25 30

0
5

10
15

Number of days elapsed

N
um

be
r

ch
an

ge
d

fu
nc

tio
ns

Complete CIG
Pruned CIG

Change Impact Overview of CIG for PR#5389

Figure 19: Change Impact Overview of hook uri2file() showing the
impact of changes older than Oct 27, 1999.

Figure 20: CIG of hook uri2file on Oct 29, 1999 showing the propa-
gated changes for the last 5 days. The changes to the function ap write
(rightmost red node) have propagated to a large portion of the graph.

2. Determine date at which the CIG is created. The defects
were reported March 14, 2002. This is the date at which
the CIG is created.

3. Determine a pruning area. Like in PR #5389, we prune
functions outside the source code of the module, the file

Figure 21: The pruned-after CIG of hook uri2file on Oct 29, 1999
showing the propagated changes for the last 5 days, and only functions
in mod rewrite.c. The failure described in PR#5389 was found in
expand backref inbuffer (rightmost red function).

0 20 40 60 80 100

0
5

10
15

20
25

Number of days elapsed

N
um

be
r

ch
an

ge
d

fu
nc

tio
ns

Complete CIG
Pruned CIG

Change Impact Overview of CIG for PR#10090

Figure 22: Change Impact Overview of hook uri2file() showing the
impact of changes older than Jan 24; after date 95—Oct 12, 2002—it is known
that the defect does not exist. Day 4 shows the only jump in the number of
changed functions in the pruned CIG, when two functions are changed.

mod rewrite.c.
4. The submitter of one of these reports claimed that a change

between versions 1.3.22 (Oct 12, 2001) and 1.3.23 (re-
leased Jan 24, 2002) had broken the “rand map type”.
These two dates delimit the period of interest. But in-
specting the Change Impact Overview, depicted in Fig-
ure 22, one can observe that after day 4 (corresponding
to Jan 20, 2002) the number of changed functions in the
CIG remains constant. This means that any pruned CIG
created with a period of interest that starts any day be-
tween Oct 12 and Jan 20, and ends in Jan 24, will contain
the same changed functions.

Figure 23 shows the CIG of hook uri2file(), computed
for the period Jan 20 to 24, 2002. Only 10 functions are mod-
ified during this period, but most of them are outside the mod-
ule’s source code. Figures 24 and 25 show the CIGs pruned-
after and pruned-before, respectively, to exclude functions out-
side the module. The main difference between both is that the
pruned-after CIG shows the impact of changes outside the prun-
ing area (it shows functions affected by changes to changed
functions not in the module); the pruned-before, on the other
hand, only shows functions affected by changed functions in-
side the module. Finally, Figure 26 shows the pruned-before
CIG with unaffected nodes removed. Removing unaffected nodes
makes the CIG easier to read, and simplifies rendering. Only
two functions have been changed, one of them rewrite rand,
where the defect was introduced. This change took place on Jan
20, 2002, just 4 days before the release of 1.3.23.

The impact-annotated source code of rewrite rand for
this period is presented in Figure 273. The error was introduced

3We build it manually, from the diffs of the changes in question.

10

Figure 23: CIG of hook uri2file() on March 14, 2002, showing the
propagated changes from Jan 20 to 24, 2002.

Figure 24: CIG of hook uri2file() on March 14, 2002, showing the
propagated changes made from Jan 20 to 24, 2002, and pruned-after to include
only functions inside mod rewrite.c. This CIG shows functions affected
by changes outside mod rewrite.c.

when a developer added the typecast (int) to the front of the ex-
pression; the priority of this operator applied the typecast to the
first part of the expression only. The log of this change reads:
“Dispatch 26 compiler emits into oblivion. Vetting is desired,
please post to the list if you participate. They are all blindingly
obvious, but extra eyes always help. This eliminates all but the
regex emits and MSVC’s borked misdeclaration of FD SET.”.

Changes like these are probably riskier than traditional changes
because they are done in mass (26 compiler errors fixed in one
change). It is clear that the developer did not fully test this
change. Otherwise the bug would have been discovered almost
immediately; instead, the failure was reported almost three months
after the bug was introduced.

Impact-annotations can be very useful in these situations.
Right after the change is committed, certain developers can be
informed that the code they are responsible for could be affected
by such commit, and they might be more inclined to check it
for correctness. Otherwise, as in the case of this bug, nobody
reviewed this line of code (or if it was reviewed, the reviewer
failed to catch the bug).

Figure 25: CIG of hook uri2file() on March 14, 2002, showing the
propagated changes made from Jan 20 to Jan 24, 2002, and pruned-before to
include only functions inside mod rewrite.c.

Figure 26: Same CIG as Figure 25 after unaffected functions have been
removed. This often simplifies the rendering of the CIG making it more
readable. The failure described in PRs #10090 and #10185 was found in
rewrite rand(), the rightmost node.

5. Related Research

Change propagation is a central activity during software
development. As developers modify code to introduce new
features or fix bugs, they must ensure that other parts of the
software system are updated to be consistent with these new
changes. For example, if the interface for a function changes,
its callers have to be modified to reflect the new interface, oth-
erwise the source code won’t compile nor link.

Many hard to find bugs are introduced by developers who
did not notice dependencies between entities, and failed to prop-
agate changes correctly. Our proposal provides a practical and
simple method that mines historical code changes to help main-
tainers in fixing bugs caused by mis-propagation of changes.

Many researchers note the dangers of mis-propagating changes.
For example, Parnas tackled the issue of software aging and
warned of the ill-effects of Ignorant Surgery, code changes done
by developers with limited knowledge of the system [14]. Arnold
and Bohner give an overview of several formal models of change
propagation [15, 16]. The models propose several tools and
techniques that are based on code dependencies and algorithms
such as slicing and transitive closure [2, 1] to assist in code
propagation. Rajlich proposes another formal model for change
propagation [17], given a particular change request Rajlich’s
model can be used to guide developers in propagating the change
in a systematic manner. These models help developers avoid
mis-propagating changes. In contrast, our model helps devel-
opers identify possible mis-propagation of changes when fixing
bugs.

Several researchers have proposed the use of historical data
related to a software system to assist maintainers of large soft-
ware systems. Cubranic et al. present a tool which uses bug
reports, news articles, and mailing list messages to suggest per-
tinent software development artifacts [18]. Chen et al. attach
the comments associated with source code changes to each code
statement and use these comments to index the code and help
in locating the lines of code associated with a particular fea-
ture [19]. Hassan and Holt propose annotating the dependency
graph of a software system with historical information to as-
sist in understanding the rationale for the current design [20].
Mockus et al. use historical code changes to help identify code
experts based on prior changes for a particular code segment [21].
Relative to previous work on the use of historical information
we recognize the importance of historical information and we
integrate the historical information into the commonly used de-
pendency information (i.e., the dependence graph).

Much of the intuition and driving force behind our work
stems from the following two related works. Graves et al.
show that surprisingly most bugs are not due to complex code

11

static int rewrite rand(int l, int h) {
rewrite rand init();

/* Get [0,1) and then scale to the appropriate range. Note that using

* a floating point value ensures that we use all bits of the rand()

* result. Doing an integer modulus would only use the lower-order bits

* which may not be as uniformly random. */

return (int)((double)(rand() % RAND MAX) / RAND MAX) * (h - l + 1) + l;

}

Figure 27: Annotated source code of rewrite rand init. Its first source code line was not modified nor affected; the second—the cause of the failure– was
modified on Jan 20, 2002, when the typecast operator (int) was inserted, truncating the first part of the expression instead of the entire result. The log of the
change explains: “Dispatch 26 compiler emits into oblivion. Vetting is desired... They are all blindingly obvious, but extra eyes always help...”.

instead they are usually due to frequently changing code [22].
Given the location of a reported bug, our method flags state-
ments which depend directly or indirectly on changing code.
Sliwerski et al. present a procedure which identifies risky code
regions using information from version history and from the
bug tracking system [23]. They present an Eclipse plug-in
which informs developers about the risk of a location on a state-
ment basis. The risk is calculated based on the number of times
a particular statement was part of a change that was later identi-
fied as being a buggy change. Similar to Sliwerski et al., devel-
opers could use our method to identify risky parts of the code.
In contrast, our definition of risk is a second-order definition:
instead of identifying risky code, we identify code that depends
on risky code by, for example, calling code which tends to have
many buggy changes.

Delta debugging is an algorithm proposed by Zeller and
Cleve to identify the piece of code executed that caused a fail-
ure [24, 25]. Therefore relevant variables and values involved
in the error are isolated and state differences of a run where
the failure occurs and of a run where the failure does not occur
are obtained. The moment when the piece of code that causes
the failure is executed points to the bug which must be fixed.
Delta requires the existence of a test suite, which are not fre-
quently available. In contrast, our method uses historical code
change information to direct the attention of developers to the
most likely change that might have caused the bug.

6. Discussion

6.1. Limitations

There are three major shortcomings of our method:

• A single commit can result in too many marked nodes in
the dependence graph, becoming impractical—as shown
in Figure 15 where 81.7% of the functions have been
changed).

• It is sometimes not easy to determine the period of in-
terest for which the dependence graph should be created.
The developer needs to experiment and apply her experi-
ence and insight in the selection of the period of interest.
The Change Impact Overview visualization (as shown in
Figure 14), along with the logs of the changes that af-
fect those functions can be used to narrow the period.

Also, the larger the period of interest, the more likely that
changes that are not relevant are included in the CIG.

• Given the recursive nature of CIGs, the larger the CIG (in
terms of nodes) the higher the probability that it includes
a function is marked as changed that has nothing to do
with the defect in question.

The larger the graph and the number of changed functions in it,
the more difficult it will be for the developer to find the source
of the defect.

Systems with a very good suite of tests will benefit from
CIGs. Failures are likely to be found early, making the period
of observation very small. The automatic annotations will point
to the few areas of the system that are likely to have changed in
such a small period.

Another method to deal with changes that affect many func-
tions is to select only a subset of changes based on certain
criteria–as described in [26]. For example, “select all commits
during the period of observation except the one that renamed
all symbols”. The risk of using this method is that one might
inadvertently skip the commit that introduced the bug which
caused the reported failure. This is not an issue when one is
interested only in being aware of what areas of the system have
changed (and which have been affected). For example, a devel-
oper might be interested to get an idea of what areas have been
affected by the changes performed by another developer; in this
case the criteria is to select only the changes authored by the
latter author.

Developers won’t be able to use our proposed method to re-
solve every reported fault. Instead as we observe in the case
study, our method is most suitable for bugs that appear due to
earlier changes in a software application. This-Worked-Before
bugs are probably the best way to describe the bugs that would
benefit the most of our method. Bugs which are due to unex-
pected usages of an application, or changes to its environment
won’t benefit from our method. Our method is one of the many
tools available for developers who are working on large code
bases, and extends and enhances commonly used basic depen-
dence graphs by incorporating historical information to prune
and highlight the graphs.

6.2. Extraction of the Dependence Graphs
The effectiveness of CIGs depends heavily on the quality of

the extraction of the dependence graphs from the source code

12

of the system. In our current implementation we use a simple
fact extractor that does not take into account function pointers
nor polymorphic function calls. Our method to create CIGs,
however, can work with any dependence graph extractor that
generates a graph where functions are represented as nodes, and
function calls as edges.

Extending our extraction and method to object-oriented lan-
guages is yet to be done. Many of the general ideas should
follow to object-oriented systems. However, we still need to
explore the limitations and benefits on a real large scale object-
oriented system.

6.3. Effectiveness of CIGs
We view CIG as a tool in a larger toolset that developers

can use to locate bugs in an efficient manner. Other tools in the
toolset could be code slicers, debuggers, and basic dependency
browsers.

The number of bugs that would benefit from our approach is
highly dependent on the experience of the developer using the
CIG, the application at hand, and the reason for the occurrence
of particular bugs (i.e., did they occur due to prior changes or
due to changes in the usage patterns of the application?). CIGs
are mainly used to fix bugs due to prior changes. Determin-
ing such bugs is an open research problem that continues to be
investigated by others, such as Kim et al. [27].

A user study is needed to study the true effectiveness of
CIGs. For this paper, we chose to perform an exploratory case
study by picking several real-life bugs and showing how non-
experts, like us, could fix these bugs with limited knowledge of
Apache. A user study would require us to either recruit real-life
developers working on such a large system, or to study a much
smaller system. Recruiting such developers is usually very hard
and not feasible; and a smaller case study conducted by students
would limit the scope of our findings.

The examples above are too few and lack the necessary
rigor to be considered a formal evaluation of CIGs. At its most
basic form, a CIG is just a size-reduced dependence graph that
can be very rapidly calculated. Therefore developers can ex-
plore the use of CIGs without requiring any additional com-
mitment on their behalf. The CIG method could be integrated
as part of commonly available dependence browsers, e.g., the
dependency browser in a IDE.

Our case study examples demonstrate the ability of the a
CIG to narrow the search space for the source of a failure by
highlighting areas of the code that have changed and that might
have an impact on a failing function. We expect that focusing
the attention of developers to specific areas of the code will
reduce the time needed to investigate a bug.

Table 2 shows the ratios of changed and affected functions
for each of the CIGs presented in our case study. Although the
CIGs are relatively large, the ratio of changed nodes is small
(as small as 2.3%) for most of the graphs, and some of them
have very few nodes. Ratios of affected functions shown table 2
may in some cases be larger than the ratio of changed functions
because of pruning.

However even if a graph contains few changed nodes, the
number of affected nodes (functions where a failure can occur)

can be large. In other words, a bug introduced in a function has
the potential to present itself as a failure in many other func-
tions.

PR CIG in Total Ratio Ratio LOCs
Figure Nodes Affected Changed

#1352 12 203 30.0% 18.2% 1647
13 4 0% 50% 172

#3130 15 142 6.8% 81.7% 3055
17 142 45.8% 16.9% 1287
18 10 40.0% 20.0% 360

#5389 20 206 43.2% 2.4% 545
21 36 69.4% 11.1% 526

#10090, 23 191 44.5% 5.3% 339
10185 26 10 80 % 20.0% 61

Table 2: Effectiveness of the CIGs for the examples presented in our case study.
The last column, LOCs, is the sum of LOCs of the functions that were changed.

6.4. Improving the tracking of a function’s evolution

Some functions are renamed, merged, split or their code
cloned. We believe it will be worthwhile to track this evolution
and use the resulting information in the creation of CIGs.

Similarly, the analysis we present relies on a textual com-
parison with comments removed, code re-indented and code re-
named. A more powerful approach would involve comparing
the Abstract Syntax Trees (ASTs) of the function before and
after the change (using methods such as [28]). Did the change
affect the AST of the code? Was it a change to a constant (such
as a string to be printed)? Was it a change to a token (perhaps
the result of a rename of a function in the same commit). This
information could be used to include and exclude some changes
when building a CIG. However an AST-based approach might
limit our ability to study all historical changes since there some
historical snapshots might contain code that is not compilable.

6.5. CIGs and slicing

A CIG reduces the size of a dependence graph using various
pruning techniques. Dependence graph represent the state of
practice in investigating code changes by developers. On the
other hand, code slicing techniques represent the state of the art
with slices being more precise and supporting various pruning
techniques based on data and control flow characteristics.

Code slicing provides a more in-depth analysis of impact
of the changed code. Slices track indirect calls via parameters,
and changes to variables, in contrast to our method which is
based only on tracking function calls. However, the benefits of
a slice come at a high cost—with slicing techniques requiring
extensive calculation time. For instance, Binkley et al. [5] show
that a slice in a 150 kLOC program can take up to 118 hours to
calculate. In contrast the CIGs are not as precise but can be
built very quickly requiring milliseconds to calculate. The fast
calculation speed ensures that we can integrate CIGs as part of
the daily toolset used by developers. Developers could explore
various CIGs with little time commitment. In future work, we

13

would like to explore a more detailed comparison of CIGs ver-
sus slicing. We also want to explore combining CIGs and slic-
ing to build on the strengths of both approaches: the accuracy
of a slice, and the speed of a CIG.

6.6. Improving the automatic annotations

The changed functions in a dependence graph can be further
annotated with a measure of the change, such as the number of
LOCs changed, the difference of the complexity between before
and after, a likelihood that the change is a risky one (based on
the type of change, who made the change, when the change was
performed, etc.). Such information can then be propagated to
the callers.

6.7. Support for automatic annotations during editing/debugging
of source code

The annotated source code could be computed on-demand
within a typical IDE (such as Eclipse) or a debugger. In a
preparation stage, the history of the project is analyzed, and
the change history of each function is created. The latest de-
pendence graph of the system is computed. At this point it is
possible to incrementally continue updating the change histo-
ries of functions and the latest dependence graph as the version
control system detects a new source control change. When pe-
rusing source code, the developer will select the period of inter-
est (either by time, or by specifying two different changes). If
the code being browsed has not changed (with respect to the lat-
est version in the source control repository), the pre-computed
CIGs would be used, otherwise a new one will be computed.
The source code will be annotated automatically using these
CIGs. From our experience we know that a CIG can be built
within milliseconds for a very large project – making a CIG
an interactive and responsive tool that developers can use on a
daily basis.

7. Conclusions

All too often developers must investigate failures in func-
tions and features that have not changed. Investigating such
failures is challenging and time consuming since these failures
are occasionally due to bugs introduced by prior code changes.
In this paper we present a method which guides developers
in their investigation of such failures by annotating the depen-
dence graph and the source code of a function with the impact
of prior historical changes. Using the annotation, developers
can quickly pinpoint the changes which most likely introduced
the bug, causing the reported failure. We demonstrate the fea-
sibility of our method through an exploratory case study on the
Apache Web Server. Our method permits developers to con-
siderably prune the size of the investigated dependence graph.
With a smaller number of nodes to investigate, developers can
better focus their attention to the nodes that are most likely the
cause for the failure.

Acknowledgements

We would like to thank our anonymous reviewers for their
helpful comments on an early version of this paper. The work
of D. M. German and A. Hassan is funded in part by the Nat-
ural Sciences and Engineering Research Council of Canada.
The work of G. Robles has been funded in part by the Eu-
ropean Commission, under the FLOSSMETRICS (FP6-IST-5-
033547), QUALOSS (FP6-IST-5-033547) and QUALIPSO (FP6-
IST-034763) projects, and by the Spanish CICyT, project So-
breSalto (TIN2007-66172).

References

[1] M. Weiser, Programmers use slices when debugging, Commun. ACM
25 (7) (1982) 446–452.

[2] M. Weiser, Program slicing, in: Proceedings of the International Confer-
ence on Software Engineering (ICSE 1981), 1981, pp. 439–449.

[3] D. Binkley, M. Harman, A large-scale empirical study of forward and
backward static slice size and context sensitivity, in: ICSM ’03: Pro-
ceedings of the International Conference on Software Maintenance, IEEE
Computer Society, Washington, DC, USA, 2003, p. 44.

[4] D. Binkley, N. Gold, M. Harman, An empirical study of static pro-
gram slice size, ACM Trans. Softw. Eng. Methodol. 16 (2) (2007) 8.
doi:http://doi.acm.org/10.1145/1217295.1217297.

[5] D. Binkley, M. Harman, J. Krinke, Empirical study of optimization tech-
niques for massive slicing, ACM Trans. Program. Lang. Syst. 30 (1)
(2007) 3. doi:http://doi.acm.org/10.1145/1290520.1290523.

[6] H. Agrawal, J. R. Horgan, Dynamic program slicing, in: PLDI ’90: Pro-
ceedings of the ACM SIGPLAN 1990 conference on Programming lan-
guage design and implementation, ACM, New York, NY, USA, 1990, pp.
246–256. doi:http://doi.acm.org/10.1145/93542.93576.

[7] X. Zhang, N. Gupta, R. Gupta, A study of effectiveness of dynamic slicing
in locating real faults, Empirical Software Engineering 12 (2) (2007) 143–
160. doi:http://dx.doi.org/10.1007/s10664-006-9007-3.

[8] T. Kamiya, S. Kusumoto, K. Inoue, Ccfinder: a multilinguis-
tic token-based code clone detection system for large scale
source code, IEEE Trans. Softw. Eng. 28 (7) (2002) 654–670.
doi:http://dx.doi.org/10.1109/TSE.2002.1019480.

[9] D. M. German, A study of the contributors of PostgreSQL, in: 3rd In-
ternational Workshop on Mining Software Repositories–MSR Challenge
Reports (MSR 2006), 2006.

[10] P. Weißgerber, S. Diehl, Identifying refactorings from source-code
changes, in: 21st IEEE/ACM International Conference on Automated
Software Engineering, 2006, pp. 231–240.

[11] M. Kim, D. Notkin, D. Grossman, Automatic inference of structural
changes for matching across program versions, in: Proceedings of the
29th International Conference on Software Engineering (ICSE 2007),
IEEE Computer Society, 2007, pp. 333–343.

[12] L. Zou, Using origin analysis to detect merging and splitting of source
code entities, IEEE Trans. Softw. Eng. 31 (2) (2005) 166–181, member-
Godfrey,, Michael W. doi:http://dx.doi.org/10.1109/TSE.2005.28.

[13] A. Mockus, R. T. Fielding, J. D. Herbsleb, Two case studies of Open
Source software development: Apache and Mozilla, ACM Transactions
on Software Engineering and Methodology 11 (3) (2002) 309–346.

[14] D. L. Parnas, Software aging, in: Proceedings of the International Con-
ference on Software Engineering (ICSE 1994), Sorrento, Italy, 1994, pp.
279–287.

[15] R. Arnold, S. Bohner, Impact analysis - toward a framework for compar-
ison, in: IEEE International Conference Software Maintenance (ICSM
1997), Montréal, Quebec, Canada, 1993, pp. 292–301.

[16] S. Bohner, R. Arnold, Software Change Impact Analysis, IEEE Computer
Soc. Press, 1996.

[17] V. Rajlich, A model for change propagation based on graph rewriting,
in: IEEE International Conference Software Maintenance (ICSM 1997),
Bari, Italy, 1997, pp. 84–91.
URL citeseer.nj.nec.com/rajlich97model.html

14

[18] D. Cubranic, G. C. Murphy, Hipikat: Recommending pertinent software
development artifacts, in: Proceedings of the 25th International Confer-
ence on Software Engineering (ICSE 2000), ACM Press, Portland, Ore-
gon, 2003, pp. 408–419.

[19] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang, A. Michail,
CVSSearch: Searching through source code using CVS comments, in:
IEEE International Conference Software Maintenance (ICSM 2001), Flo-
rence, Italy, 2001, pp. 364–374.
URL citeseer.nj.nec.com/436456.html

[20] A. E. Hassan, R. C. Holt, Using development history sticky notes to un-
derstand software architecture, in: IWPC, 2004, pp. 183–193.

[21] A. Mockus, L. G. Votta, Identifying reasons for software changes using
historic databases, in: Proc Intl Conf Softw Maintenance, 2000, pp. 120–
130.

[22] T. L. Graves, A. F. Karr, J. S. Marron, H. P. Siy, Predicting fault incidence
using software change history, IEEE Trans. Software Eng. 26 (7) (2000)
653–661.

[23] J. Sliwerski, T. Zimmermann, A. Zeller, Hatari: raising risk awareness,

in: ESEC/SIGSOFT FSE, 2005, pp. 107–110.
[24] A. Zeller, Isolating cause-effect chains from computer programs, in: SIG-

SOFT FSE, 2002, pp. 1–10.
[25] H. Cleve, A. Zeller, Locating causes of program failures, in: 27th Inter-

national Conference on Software Engineering (ICSE 2005), 15-21 May
2005, St. Louis, Missouri, USA.

[26] A. McNair, D. M. German, J. Weber-Jahnke, Visualizing software archi-
tecture evolution using change-sets, in: ”Proc. 14th Working Conference
on Reverse Engineering”, 2007, pp. 140–149.

[27] S. Kim, T. Zimmermann, K. Pan, E. J. J. Whitehead, Automatic identifi-
cation of bug-introducing changes, in: ASE ’06: Proceedings of the 21st
IEEE/ACM International Conference on Automated Software Engineer-
ing, IEEE Computer Society, Washington, DC, USA, 2006, pp. 81–90.
doi:http://dx.doi.org/10.1109/ASE.2006.23.

[28] B. Fluri, M. Wuersch, M. PInzger, H. Gall, Change distill-
ing: Tree differencing for fine-grained source code change ex-
traction, IEEE Trans. Softw. Eng. 33 (11) (2007) 725–743.
doi:http://dx.doi.org/10.1109/TSE.2007.70731.

15

