
March 1, 2006 19:14 WSPC/117-ijseke 00266

International Journal of Software Engineering
and Knowledge Engineering
Vol. 16, No. 1 (2006) 5{21
c World Scienti�c Publishing Company

VISUALIZING THE EVOLUTION OF SOFTWARE

USING SOFTCHANGE

DANIEL M. GERMAN� and ABRAM HINDLEy

Software Engineering Group, Department of Computer Science,

University of Victoria, Victoria, BC, Canada V8W3P6
�dmgerman@uvic.ca

yabez@abez.ca

A typical software development team leaves behind a large amount of information. This
information takes di�erent forms, such as mail messages, software releases, version con-
trol logs, defect reports, etc. softChange is a tool that retrieves this information, anal-
yses and enhances it by �nding new relationships amongst it, and then allows users to
navigate and visualize this information. The main objective of softChange it to help pro-
grammers, their management and software evolution researchers in understanding how
a software product has evolved since its conception.

Keywords: Software evolution; software trails; CVS; visualization; softChange.

1. Introduction

Many software projects use a version control repository to record the evolution of

their source code. These repositories keep track of every change to any source �le of

the project, including metadata about the change, such as author and date when it

happened. Over time, the amount of revisions to a project become enormous. For

example, the Mozilla project is composed of 35,000 �les which have been modi�ed

450,000 times in 5.5 years of development (from March 1998 to August 2003) by

500 di�erent developers.

CVS, the Concurrent Versions System, is arguably the most widely used version

control management system available in the market and has become a de-facto

standard in the development of open source projects.

While CVS is a very powerful tool, it provides many barriers to the extraction

and visualization of valuable information. CVS commands are cryptic and their

output formats are not easy to understand. CVS queries often produce an excess

of information which is hard for the frustrated developer to sift through. General

summaries are rarely provided. Furthermore, CVS does not provide any alternative

methods to browse through its information.

CVS is built around a group of command-line programs. Several GUI appli-

cations (winCVS, tkCVS, cvsWeb, LinCVS, Pharmacy, gCVS, etc.) and some

5

March 1, 2006 19:14 WSPC/117-ijseke 00266

6 D. M. German & A. Hindle

integrated development environments (such as Eclipse) provide a GUI to CVS.

In all these cases, the tools are created around the CVS commands and options,

providing nothing more than a fancy GUI to the actual commands.

One of the main disadvantages of CVS is that it is not transaction oriented.

In other words, when a developer proceeds to \commit" a group of changes to a

number of �les, CVS does not keep track of all the �les modi�ed by this commit

operation. It treats each change to a �le independently of the other �les included in

the commit. After the commit has taken place, CVS does not know which �les were

modi�ed together | users can take steps to make their commits more traceable by

using the same log comment, or tagging the �les in their commit. This information,

however, is important because it highlights coupling amongst �les: if two �les are

modi�ed at the same time, it is because they share something in common (at the

very least those two �les were checked-in together). In this paper we refer to a

commit operation as a modi�cation record (MR). An MR is therefore a collection

of revisions to �les that are modi�ed at the same time. Several heuristics have been

proposed to recover these MRs.

The information stored in the CVS repository is quite valuable as it can help

answer many questions. For instance, it can assist developers to �nd who has mod-

i�ed which �les and when; it can also help the administration to understand the

modi�cation patterns of the project and the way the di�erent team members inter-

act. Finally, it can help to recover the evolution of the project. In [14] Wu collected

questions that developers might ask of a CVS repository: what happened since I

last worked on this project? Who made this happen? When did the change take

place? Where did the change happen? Why were these changes made? How has the

�le changed? What methods or functions were changed? What is the frequency of

change? What �les have changed? Who is working on each module?

Administrators, on the other hand, are interested in higher level questions and

metrics such as: how often does a programmer complete an MR? How much does

the programmer modify in an MR? What kind of commits does one programmer

do? How much has changed between each release? How many bugs are �xed and

found after a stable release? What kind of modi�cations are done at a certain time?

When was a module stabilized? What is the daily LOC count for each programmer?

When is a module being developed and maintained?

We de�ne software trails as information left behind by the contributors to the de-

velopment process, such as mailing lists, websites, version control logs, software re-

leases, documentation, and the source code [8]. In this paper we describe softChange,

a tool that mines software trails from CVS and then enhances this data with some

heuristics in order to recover higher level information, such as rebuilding MRs.

Each MR is analyzed in order to know what type of changes took place; such as

adding new functions, reorganizing source code, adding comments to the code only,

etc. After extraction and analysis, softChange provides a graphical and hypertext

representation of this information.

March 1, 2006 19:14 WSPC/117-ijseke 00266

Visualizing the Evolution of Software Using softChange 7

This paper is divided as follows: previous work is described in Sec. 2; Sec. 3

describes softChange; Sec. 4 describes the visualization features of softChange; in

Sec. 5 we demonstrate the e�ectiveness of softChange by analyzing two mature

projects; we end with our conclusions, and future work.

2. Previous Work

The two most commonly used hypertext front ends to CVS are Bonsai [10] and lrx

[9]. They provide a Web interface to the CVS repository and isolate the user from

the complexities of the CVS commands (the man page of CVS is 9000 words long).

Both tools allow the user to inspect the history of any given �le in the project and

neither of them attempts to enhance the software trails available in the repository.

Xia is a plugin for Eclipse for the visualization of CVS repositories [14]. Xia

recovers relations available in the logs of a CVS repository and allows the user to

navigate them. It uses squares to represent �les, their revisions and developers, and

lines to represent the relationships between them. Xia has two main limitations.

The �rst is that Xia relies on the Eclipse API to access the CVS repository. Every

time Xia wants to create a view, it queries the CVS repository in order to retrieve

the necessary data. This becomes a very expensive operation making Xia extremely

slow in large CVS repositories. The second limitation is that Xia operates at the

revision level, not at the MR level.

Hipikat aggregates many sources of information such as Bugzilla, the CVS repos-

itory, mailing lists, emails etc. and provides a searchable query interface [1]. The

purpose of Hipikat is to \recommend software artifacts" rather than summarize and

visualize them. Thus Hipikat is much like Google for a software project. One inter-

esting feature of Hipikat is that it correlates software trails from di�erent sources,

inferring relationships between them. Liu and Stroulia have developed JReex, a

plug-in for Eclipse for instructors of software engineering courses. JReex helps the

instructor to monitor how di�erent teams of students developed a term project by

using their CVS historical information [11]. It is designed to compare the di�erences

in development styles in di�erent teams, who does what, who works on what part

of the project, etc. JReex is intended to be a management oriented tool for brows-

ing the CVS historical data. JReex does not enhance the information available in

CVS. Fisher and Gall have described a CVS fact extractor in [3]. In it they describe

the main challenges of creating a database of CVS historical data and then use it

to visualize the interrelationships between �les in a project [4]. Spectrographs are

a type of visualization based on historical data that attempts to show where and

where change occurs in a system [13]. MDS-Views are another type of visualization

that shows dependencies between di�erent parts of the system based on how fre-

quently they are modi�ed to solve a given defect report. It is intended to be used

by managers and researchers who are interested in evaluating the current \design

erosion" of the system [2]. In [12] we propose a framework for describing, comparing

and understanding visualization tools that provide awareness of human activities

March 1, 2006 19:14 WSPC/117-ijseke 00266

8 D. M. German & A. Hindle

in software development, including tools that mine and use historical information

to achieve their goal.

3. softChange

Early in our research we gathered a number of requirements for a tool to explore

software trails:

� The main users of this tool will be researchers (ourselves) who are interested in

understanding how software evolves.

� The software trails should be extracted and stored in a database for further

analysis. Ideally the tool should retrieve each trail only once.

� The tool should have a layered architecture: one layer dedicated to the extraction

of the trails, and another dedicated to the exploration of this data. A third layer

should be responsible for the analysis and discovery of new facts from the ones

currently stored in the database. The database should serve as the intermediary

between these layers. These layers should be as independent as possible from each

other.

� The database schema should be extensible, that is, as more software trails are

extracted (and new relationships are found) these can be incorporated into the

database.

� The tool should provide a way to navigate the information at di�erent levels of

granularity: sometimes one is interested in the speci�cs of a given change, while

in some other cases in trends.

We proceeded to create softChange around this set of requirements.

3.1. softChange architecture

softChange is composed of four main components, depicted in Fig. 1.

� Software trails repository: At the core of softChange lies a relational database

that is used to store all the historical information (see [7] for a description of the

schema of this database).

� Software trails extractor: In a typical software development project, software

trails originate from many di�erent sources: CVS historical data, email mes-

sages, bug reports, ChangeLogs, etc. The purpose of softChange trails extractor

is to retrieve as many software trails as possible. Currently, softChange is able

to retrieve trails from CVS, from ChangeLogs, from the releases of the software

(the tar �les distributed by the software team) and from Bugzilla.

� Software trails analyzer: Once softChange has extracted the software trails, it

proceeds to use this information to generate new facts. For example, using a set

of heuristics, softChange regroups �le revisions into MRs [7]. softChange analyzes

the changes in the source code and thus extracts a list of function, methods

and classes that have been added, modi�ed or removed from one �le revision

March 1, 2006 19:14 WSPC/117-ijseke 00266

Visualizing the Evolution of Software Using softChange 9

Visualizer softChange
 Architecture

 mail
archives

 bugzilla
repository

 cvs
repository

.h.pl.pl.pl .cpp.cpp

.c.c.c.c
.c.c.c.c

.cpp.cpp.cpp.cpp

Fact Extractor

Fact Enhancer

softChange
 repository

Fig. 1. Architecture of softchange.

to the next. softChange also correlates the available software trails; for example,

softChange links a given MR to its Bugzilla bug report.

� Visualizer: softChange provides a visualizer to the repository that allows the user

to explore the software trails. This front end is described in detail in the next

section.

4. Visualizing Software Trails

The main objectives of softChange are to summarize, browse and visualize the evo-

lution of a software project. The visualizer of softChange is divided into three main

components: a browser, a chart generator and an interactive graphical visualizer.

The softChange browser is a hypertext application that permits the exploration

of MRs, the �les they contain, and any changes made to these �les. These changes

include: a list of the functions added, modi�ed or deleted, a pretty-printed ver-

sion of the di�erences between source code, both in its original form, and after the

comments and empty lines have been removed (which we call clean version). The

advantage of generating a clean version of the modi�ed code is that it allow us to de-

tect changes that are only in whitespace and comments and therefore do not change

the functionality of the source code. For example, in the history of PostgreSQL (the

March 1, 2006 19:14 WSPC/117-ijseke 00266

10 D. M. German & A. Hindle

Fig. 2. A screenshot of the browser showing the details of a revision.

free software database management system) we detected that approximately 20%

of all �le revisions are only changes in comments or whitespace; for Evolution (a

free software mail client similar to Microsoft Outlook) the proportion was approx-

imately 9%. The softChange browser targets users who are interested in explicit

changes, such as what are the changes that occur in this �le in a given date; or for

a given change, which methods were modi�ed, or what other �les were modi�ed at

the same time.

The main goal of the softChange browser is to help users in the exploration and

understanding of the history of a given project. A developer can quickly navigate

through the MRs, revisions or defects of a project. Figure 2 shows the details of

a revision from the project Evolution. It contains an explanation of the change,

what �le the revision corresponds to, and which MR the revision is part of. In this

example, the softChange browser also indicates that one function has been deleted

and shows the corresponding code that was removed. The user can easily navigate

between the di�erent revisions of the same �le, to other revisions that compose the

MR, or to other changes made by the same author.

The second visualizer of softChange is a chart generator that plots di�erent types

of information as two-dimensional graphs. Some of the charts created by softChange

are:

� Growth of LOCS vs. time: Although this metric is not the most valuable metric, it

does give an indication of activity and the possible kinds of activities occurring in

the project. A rapid rise could indicate development of new functionality whereas

March 1, 2006 19:14 WSPC/117-ijseke 00266

Visualizing the Evolution of Software Using softChange 11

a constant slow rise could indicate maintenance activity or lack of activity.

� Number of MRs vs. time: This metric seems to better represent the volume of

activity in a repository. This metric is useful to observe change at the maintenance

level whereas LOCS vs. time did not provide much information about the actual

activity of a repository.

� Number of �les vs. time: This metric usually indicates structural changes to a

repository whether it is adding or removing modules, refactoring parts of modules

or just renaming �les. Since the adding of �les is much more rare than modifying

�les, this metric indicates behavior which could be of signi�cance.

� Number of �les per MR: This metric is useful to study the type of changes that

go into a system. We have observed that defect �xes involve a small number of

changes, and that changes in comments tend to include a large number of �les.

� Proportion of MRs per contributor: MRs can be seen as an indicator of �nished

tasks, and therefore this plot can be used as an indicator of the amount of work

by a developer.

� Frequency of modi�cation to modules: This measurement could indicate which

modules undergo a lot of development and which ones are relatively stable.

We are constantly experimenting with new charts that might highlight certain

aspect of the history of the project. The objective of these charts is to give the user

a high-level overview of how the project is evolving. The user is allowed to select

the period of interest and the output is a Postscript �le.

The �nal component of softChange is its graphical visualizer. It is an interactive

application that allows the user to explore the history of the project as a collection

of graphs. softChange’s graphical visualizer creates many graphs:

1. A �le authorship graph relates �les and the contributors who modify them.

Each �le and each contributor is represented by a node. A �le is connected to

the contributors who have modi�ed it. The arc’s width is proportional to the

number of times a contributor has modi�ed the corresponding �le.

2. A coupling graph shows which �les are modi�ed together. Each �le is a node,

and two �les are connected by an arc if they are modi�ed together. The arc’s

width is proportional to the number of times the two �les have been modi�ed

together.

3. A change overview graph shows all �les in a project and highlights those that

have been modi�ed. Each node is a �le, and they are connected in a tree according

to their organization in the �le system.

4. An authorship overview graph shows who is the most frequent person to modify

a given �le.

5. A �le evolution graph shows when a �le is modi�ed and by who. This graph is

similar to the spectrograph proposed in [13].

March 1, 2006 19:14 WSPC/117-ijseke 00266

12 D. M. German & A. Hindle

5. Evaluation

We have been using softChange as part of our research in software evolution and

software engineering empirical studies. In [8] we described a method to recover

the evolution of a software system using its historical information (version control,

releases, email, change logs, and defect information). We used softChange to extract

the history of Evolution (a mail client for Unix), and then analyze and visualize it.

softChange was instrumental in allowing us to look into the past of the project and

infer how it had evolved since its conception.

In [5] softChange was used to extract historical information from the free soft-

ware project GNOME (a large project with more than 500 developers who are

working towards building a suite of libraries and GUI applications for the Linux

desktop). In this project we were interested in understanding the way that the soft-

ware developers of the GNOME project collaborated. The analysis of its history

allowed the discovery of interesting facts about the project: its growth, the interac-

tion between its contributors, the frequency and size of the contributions, and the

important milestones in its development.

In [6] we looked in detail into the characteristics of MRs in the Evolution project:

the interrelationships of the �les that compose them, and their authors, the type of

work that each MR completed, etc. We proposed several metrics to quantify MRs.

We proceed to exemplify the use of softChange to compare and visualize the

history of two software projects: PostgreSQL and Evolution.

5.1. Methodology

The Evolution project was born in 1999. In November 2003 we proceeded to extract

its software trails. Its CVS repository included 5127 �les, which had been modi�ed

47,814 times, by 148 contributors. We correlated this information with its Bugzilla

repository. We also retrieved every release (a tar �le available for download by any

user) available.

In September 2004 we proceeded to extract all the available software trails from

the PostgreSQL CVS repository. Unfortunately its CVS repository only records

its history starting from July 1996 (version 1.02). Its developers did not use CVS

prior to this date. PostgreSQL does not use Bugzilla for its defect management. Its

CVS repository included 5581 �les which were modi�ed 91740 times by 27 di�erent

contributors.

We then proceeded to create various charts and graphs in order to show how they

can be used to assist software evolutionists to recover the history of these projects. It

is important to mention that the objective of this section is not to compare these two

projects nor the software practices of its developers. Both projects are very di�erent

in nature: Evolution has a very rich graphical user interface, while PostgreSQL is

a powerful DBMS, and therefore they are expected to show strong di�erences.

Our intention, instead, is to show that softChange can be used to highlight these

di�erences. It is up to the software evolutionist to interpret these di�erences.

March 1, 2006 19:14 WSPC/117-ijseke 00266

Visualizing the Evolution of Software Using softChange 13

 0

 200

 400

 600

 800

 1000

 1200

97/01 98/01 99/01 00/01 01/01 02/01 03/01 04/01

M
R

s

Date

MRs
codeMRs

Major releases

Fig. 3. Number of MRs per month for Evolution.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

96/01 97/01 98/01 99/01 00/01 01/01 02/01 03/01 04/01 05/01

M
R

s

Date

MRs
codeMRs

Major releases

Fig. 4. Number of MRs per month for PostgreSQL.

5.2. Visualizing evolution using softChange

Understanding how a software system evolves requires a comprehensive analysis of

all available historical information. One of the main challenges a researcher faces is

information overloading: there is too much information to inspect. Visualizations

can be used to overcome this problem. Several visualizations for software trails have

been proposed in the literature [12] and each is intended to provide a di�erent view

of the system with a particular purpose in mind.

We will proceed to show a sample of the visualizations created with softChange.

We start with a comparison of MRs over time. The intention of this plot is to show

a measure of activity in the project. Figures 3 and 4 correspond to the number

of MRs per month for Evolution and PostgreSQL. These charts highlight a special

type of MR that is of particular interest: MRs that contain at least one source

code �le. We call these codeMRs. Note that the proportion of codeMRs to MRs

remains fairly constant over the life of both projects. There seem to be less codeMRs

per MR in PostgreSQL, however. The chart for the project Evolution shows how

the project evolved slowly during its beginning, while PostgreSQL has remained

relatively steady during the last 8 years. It is also interesting that there is a slight

periodicity in these graphs that matches the periods between releases.

In order to create the �le authorship and the coupling graph we are interested in

�nding MRs that contain �les that show a signi�cant level of \coupling" between

themselves. We have discovered that some MRs are only modi�cations to comments

(for example, the largest MR in PostgreSQL contained 995 �les and it was a simple

modi�cation to the comment of each of these �les). We proceeded to �lter codeMRs

March 1, 2006 19:14 WSPC/117-ijseke 00266

14 D. M. German & A. Hindle

 0

 5

 10

 15

 20

 25

 30

 35

97/01 98/01 99/01 00/01 01/01 02/01 03/01 04/01

A
ut

ho
rs

Date

Authors of MRs
Authors of codeMRs

Fig. 5. Number of authors per month for Evolution.

using the following algorithm:

� Eliminate codeMRs that are only modi�cations of comment. These types of mod-

i�cations do not necessarily imply a functionality relationship between the �les

that are included (they might be related from other points of view, though). For

example, the change in the license or the copyright of a set of �les.

� Eliminate codeMRs that are not committed to the main trunk of the repository.

Branches in CVS pose di�cult problems for researchers because the analysis can

potentially record changes twice: one when the MR is committed to the branch,

and when the branch is merged back to the main trunk. Branches can also be

experimental work that is never added to the project [3].

� Eliminate codeMRs that contain more than 25 source �les. In our observations

large codeMRs do not provide very useful coupling information because they

are few (in the projects we have analyzed they account for less than 3% of the

MRs) and they might contain �les that are not really related (for example branch

merges tend to be large, or an MR might implement di�erent features at once).

Our assumption is that the remaining codeMRs will contain �les that are more

likely to be related to each other than if we used all of the original MRs. We chose

to extract codeMRs for only one month of development. We chose October 2002

for Evolution, and January 2002 for PostgreSQL as these dates corresponded to

the month just before a major release (version 1.2.0 of Evolution was released on

2002/11/07, and version 7.1 of PostgreSQL was released 2002/02/04). Our analysis

of the comments of the MRs during these periods allow us to state that they were

periods of debugging and maintenance and very few features were added to the

systems.

The �le authorship graph is intended to show how many contributors tend to

modify a given �le. These graphs can be very useful to explore the interrelationships

between developers and to show how independently they work. It can also tell who

is responsible for a given �le. One can argue that a system that has been properly

divided among its programmers, should have an authorship graph that contains

clusters of nodes that are slightly interconnected between each other (most �les

are modi�ed by one individual | the clusters, and some are modi�ed by several

individuals). Figures 6 and 7 show the authorship graph for both projects.

March 1, 2006 19:14 WSPC/117-ijseke 00266

Visualizing the Evolution of Software Using softChange 15

Fig. 6. Authorship graph for the project Evolution for November 2002.

The coupling graph can show hidden relationships between �les that are not

apparent from static analysis. For example, a program might have a function that

writes to a �le and another one that reads it, but they might not call each other

and static analysis will not relate them. They might, however, need to be modi�ed

together if there is a change in the format of that �le. The coupling graph for

PostgreSQL is shown in Fig. 8 during the month of January 2002. The graph shows

that most �les create small clusters and that some �les connect sub-clusters.

The �les activity graph is intended to show how localized the changes to �les

are during a given period. Figure 9 shows the �le activity graph for PostgreSQL

during January 2002. The darker a �le is, the more frequently it has been modi�ed.

The graph shows the �les in the backend module of the database. The authorship

March 1, 2006 19:14 WSPC/117-ijseke 00266

16 D. M. German & A. Hind le

Fig. 7. Authorship graph for the pro ject PostgreSQL for January 2002.

overview graph is similar to the �les activit y graph but it only shows �les modi�ed
during the given period, and it colorsthe �les accordingto the author who modi�ed
them the most. Figure 10 shows the corresponding graph for the samemodule and
the sameperiod.

