
in Proceedings of the International Conference on Software Maintenance 1997 (ICSM ’97)

- 1 -

Software Evolution Observations Based on Product Release History

Harald Gall, Mehdi Jazayeri, René R. Klösch, Georg Trausmuth
Distributed Systems Group

Technical University of Vienna
Argentinierstrasse 8/184-1, A-1040 Wien, Austria, Europe
{gall,jazayeri,kloesch,trausmuth}@infosys.tuwien.ac.at

Abstract
Large software systems evolve slowly but constantly. In
this paper we examine the structure of several releases of
a telecommunication switching system (TSS) based on
information stored in a database of product releases. We
tracked the historical evolution of the TSS structure and
related the adaptations made (e.g. addition of new
features, etc.) to the structure of the system. Such a
systematic examination can uncover potential short-
comings in the structure of the system and identify
modules or subsystems that should be subject to
restructuring or reengineering. Further, we have
identified additional information that would be useful for
such investigations but is currently lacking in the
database.

1 Introduction

The aging of software is a problem that is often
neglected in software development. But the effects and the
costs of aging software have become much clearer and
subject to many discussions during the past years:
Lehman and Belady discuss the laws of software
evolution and the life cycles of programs [14,15]. Parnas
[18], for example, lists preventive techniques to delay the
decay and limit the effects of software aging: design for
change, documentation, and reviews.

This paper deals with a typical problem of software
evolution: Software systems must evolve to satisfy new
demands. After many enhancements a critical point is
reached when each new release decreases the evolvability
and increases the complexity of the system. The system
becomes so complex and difficult to evolve that new
releases require exorbitant costs. To avoid or remedy such
a situation, it is important to identify modules that are in
need of restructuring. In this paper, we show one way of
identifying modules that exhibit a potential for
restructuring based on historical data about the system.

We describe the evolution of a large Telecommuni-
cation Switching System (TSS) based on information
about its structure stored in a database. The investigation
involves twenty system releases that were delivered over a

period of about two years. These releases were triggered
by product improvement and new customer demands. The
data on which our analysis is based is the number of
modules and programs rather than the number of lines of
code. In accordance to [15,23] we also believe that system
size is measured by the number of modules and changes
of the system functionality are reflected in added,
removed or changed modules.

The investigated system has been under development
for many years: it was adapted to changing requirements
and many new features were added. The continuous
development increased both the size and the complexity
of the system dramatically.

The goal of our work is to identify potential
shortcomings of the TSS structure by tracking its
historical development. For that we use a database
containing structural information about several releases of
the TSS. Our second goal is to evaluate the adequacy of
the database.

After structural shortcomings have been identified
these parts of the system can be subject to program
restructuring or reengineering. Techniques and tools
presented in [4] or [10] especially address the
restructuring of large software systems. Methods for
reengineering can be found in, for example, [1].

Related approaches differ from our work in that they
mainly focus on a micro-level to analyse the evolution of
a software system: the source code is analysed and source
code metrics are used as indicators of the system’s quality
and complexity [19]. Other approaches identify fault-
prone modules using statistical techniques based on
design metrics [17] and discriminant analysis [12,13]. In
[6] fault and defect metrics are used for in-process project
control and for process improvement over time.

Other related work analyses the structure and the
architecture of software systems. Methods for
architectural reasoning and assessment as described in
[20] or [22] could be used for restructuring the
architecture.

Visualization approaches such as SAAM [11], SeeSys
[2], SeeSoft [8], or [3,5,7] deal with the visualization of
software in different ways by comparing architectures or
architectural styles, visualizing statistics associated with
the code, or visualizing source code information.

in Proceedings of the International Conference on Software Maintenance 1997 (ICSM ’97)

- 2 -

We focus on a macro-level of software evolution by
tracking the release history of a system. We thereby only
investigate structural information about each release (such
as version numbers of system modules indicating major or
minor releases) but no source code metrics at all.

The paper is organized as follows: In Section 2 we
describe the case study to the extent needed to understand
the evolution observations. We have changed the names
of the modules and subsystems to avoid the identification
of the system. Section 3 describes our software evolution
observations that were made on the basis of the whole
system and modules of a particular subsystem. We report
on our results in Section 4. In Section 5 we draw some
conclusions and point to areas of future work.

2 The Case Study

The software examined in this case study is a
Telecommunication Switching System (TSS).
Telecommunication Switches are used to connect lines
and usually consist of a hardware part and a software part.
Our evaluation only concerns the software. The TSS
covers a wide range of utilization: for example, it can be
used as a switch in a fixed network, as a large
international switch and as a switch for mobile telephones.
The source code of TSS consists of over 10 million lines
of code and several thousand files.

The TSS was first shipped in the early 1980s. The
implementation of the software of the initial release was
done in a machine-specific low-level language. After a
few years this language was gradually replaced. So far,
many different languages, such as Assembler, C and
Basic, have been used to code new parts of the system.
Presently, the system is being developed using SDL [21].
The SDL programs are translated into C and then
compiled with a standard C-compiler.

2.1 The structure of the case study

The software structure of the TSS is a tree hierarchy
with four levels: the system, subsystem, module, and
program level. Each level consists of one or more
elements. Each element of a certain level is connected to
one element of the higher level. The system level contains
only one element representing the root of the tree.

The elements in each level are named corresponding to
the names of the levels: the elements in the subsystem
level are called subsystems, the elements in the module
level modules and the elements in the program level
programs.

Diagram 1: The software structure of the TSS

Diagram 1 shows the software structure of the TSS.

The tree hierarchy limits the visibility of the algorithms
contained in the program level. For instance, an algorithm
of a specific program can only be seen by another
program of the same module. The tree hierarchy,
however, does not restrict the use of the algorithms at the
implementation level. Note that this logical structure has
been defined after the implementation of many releases of
the system and that it represents the organizational
structure rather than the structure of the actual
implementation of the software.

Telecommunication Switches are products that require
extensive customization for different markets and
applications. Currently, this customization affects large
parts of the system, mainly because the customization is
performed by making unstructured changes directly to the
code. Each customer receives a specially adapted
program. This kind of customization makes the system
expensive to develop, test, and maintain.

2.2 The Product Releases Database (PRDB)

A system of 10 MLOC is difficult to manage. To help
simplify the management and to enable the study of the
structure, a database stores structural information of the
whole system. The information required to populate the
product releases database (PRDB) is derived directly from
the source code: during compile time preprocessors
extract the required information and store it.

The PRDB contains 20 different releases (representing
releases over 21 months). Eight of these releases are
major releases (release 1 through 8) and twelve are minor
releases for release 6 (6.01 through 6.12). Major releases
represent substantial changes in the functionality of the
system. Minor releases contain mainly bug fixes. The time
intervals between major releases (1-3 months) are
normally larger than between minor releases (15-30 days).

in Proceedings of the International Conference on Software Maintenance 1997 (ICSM ’97)

- 3 -

Note that “Release 1” is not the first release of the system,
it is just the first release that is stored in the PRDB.

For each release stored, the database contains entries
for elements at the system, subsystem, module, and
program level. Systems and programs are characterized by
a version number. Each system has the version number of
the specific release. Program version numbers are inde-
pendent from the version number of the system to which
they are connected. Programs which have been changed
from one release to the following are identified by an
incremented version number in the newer release.
Furthermore, relations between various elements of the
system are stored in the PRDB (e.g. Module C consists of
Programs A, B, and C). Properties are used to attach
additional information to elements or relations, such as
textual descriptions of an element or the name of the
developer.

Each system release stored in the database consists of
eight subsystems, 47 to 49 modules, and about 1500 to
2300 programs.

3 Software Evolution Observations

Based on the structural information stored in the PRDB
we tracked the historical development of the structure of
TSS. This concerned, for example, the evolution of the
size of the system and its subsystems and the programs of
a particular module which changed from one release to the
next. With the information gathered this way, we tried to
identify potential shortcomings in the current structure.

The PRDB contains a large amount of information and
a key problem is to extract useful information in order to
reason about the evolution of the TSS. We started the
software evolution observation by setting up a list of
queries. The answers to these queries should support
reasoning about the evolution and help in identifying
structural problems. The queries are formulated in such a
way that outliers (i.e. components which have
significantly different evolving characteristics compared
to the rest of the system) can be isolated. To access the
PRDB a C++ library, which grants easy access to the
information stored in the database, is used. Based on this
library and on the list of queries several programs were
developed to collect the information required.

In the following descriptions, we focus on a subset of
system properties:
• The size of each system, subsystem or module is

defined as the number of programs it contains.
According to [9] the study of large systems should be
based on the number of “modules” rather than source
code size. We use programs as the module unit.

• The changing rate is the percentage of programs of a
particular system, subsystem or module, which
changed from one release to the next. Changed
programs are identified by a different version number.
To compute the changing rate, two releases are
required for comparison. The relative number of the
changed programs represents the changing rate.

• The growing rate is defined as the percentage of
programs of a particular system, subsystem or module,
which have been added (or deleted) from one release
to the next. To compute the growing rate, two releases
are compared and the numbers of the added and
deleted programs are computed. The relative number
of the new programs represents the growing rate.
Using the information extracted from the database,

several statistics and diagrams are computed. In the
following we will describe the evolution observations on:
1) the whole system; and 2) the modules of a particular
subsystem we chose for further study. Then we will
interpret our observations from the viewpoint of system
evolution.

3.1 System Oberservations

Diagram 2 shows the historical development of the size
of the examined system using the release numbers in the
x-axis. The system has a high growing rate: it consisted of
1499 programs initally and of 2303 at the end. This means
that the total size of the TSS increased by over 53 percent
in less than two years (21 months).

Size of the system

0

500

1000

1500

2000

2500

"1
.0

0"
"2

.0
0"

"3
.0

0"
"4

.0
0"

"5
.0

0"
"6

.0
0"

"6
.0

1"
"6

.0
2"

"6
.0

3"
"6

.0
4"

"6
.0

5"
"6

.0
6"

"6
.0

7"
"6

.0
8"

"6
.0

9"
"6

.1
0"

"6
.1

1"
"6

.1
2"

"7
.0

0"
"8

.0
0"

releases

of

 p
ro

gr
am

Diagram 2: Evolution of the size of the system over
several releases

The first six releases that are stored in the database are
major releases. Between release 6.00 and 7.00 several
minor releases are stored. The time intervals between the

in Proceedings of the International Conference on Software Maintenance 1997 (ICSM ’97)

- 4 -

major releases are long compared to that of the minor
releases. This causes a larger growth in the first half of the
diagram. If this effect is neglected, the graph almost could
be viewed as a straight line. Hence, it can be concluded
from the diagram that the size of the system is growing
linearly.

Number of added programs

-20
0

20
40
60
80

100
120
140
160
180
200

"2
.0

0"

"3
.0

0"

"4
.0

0"

"5
.0

0"

"6
.0

0"

"6
.0

1"

"6
.0

2"

"6
.0

3"

"6
.0

4"

"6
.0

5"

"6
.0

6"

"6
.0

7"

"6
.0

8"

"6
.0

9"

"6
.1

0"

"6
.1

1"

"6
.1

2"

"7
.0

0"

"8
.0

0"

releases

of

 p
ro

gr
am

s

Diagram 3: Number of added programs in each
release

Diagram 3 shows the number of programs that were

added in each release. So, for example, it shows that at
release 2.00 more than 150 new programs were added to
the system.

At the beginning (between release 2.00 and 5.00) the
number of programs added is large. After release 5.00 it
significantly decreases and becomes relatively constant. In
releases 6.07, 6.09 and 7.00 the number increases again
for exactly one release.

Changing and growing rate

0
5

10
15
20
25
30
35
40
45

"2
.0

0"

"3
.0

0"

"4
.0

0"

"5
.0

0"

"6
.0

0"

"6
.0

1"

"6
.0

2"

"6
.0

3"

"6
.0

4"

"6
.0

5"

"6
.0

6"

"6
.0

7"

"6
.0

8"

"6
.0

9"

"6
.1

0"

"6
.1

1"

"6
.1

2"

"7
.0

0"

"8
.0

0"

releases

pe
rc

en
ta

ge

changed

new

Diagram 4: Comparison of the changing and
growing rates

Diagram 4 compares the changing and growing rates
for each release. In some releases the changing and

growing rate increase together (e.g. in releases 5.00 and
7.00), in other releases the changing rate decreases when
many new programs are added (e.g. in releases 3.00 or
6.03), but in general no significant correlations between
changing and growing rates can be derived. Diagram 4
shows a noticeable stabilization of the whole system over
time.

The number of added, deleted and changed programs is
high between releases 2.00 and 5.00 which indicates some
major changes in the functionality or to the system
hardware.

At the beginning (from releases 1.00 to 2.00) over 40
percent of the programs were changed which is rather
high. At the end (from release 7.00 through 8.00) only 7
percent of the programs were changed. This means that
the number of changed programs significantly decreased
over the observed releases.

We briefly summarize our findings from the above
facts:

• The size of the system is increasing linearly.
• Between releases 2.00 and 5.00 and in release

7.00 some major activities can be observed.
• In general the changing rate of the whole system

decreases.
• In the last examined releases only a few new

programs were added.
• The structure of the whole system has become

stable.

The observations on the system level indicate that the

system supports evolution in a satisfactory way, because
the growing and changing rates decrease over time. The
validity of our observations on the whole system does not
necessarily hold for the subsystems. On the contrary, we
need to verify the behavior of the subsystems in detail. In
this paper, we focus on the analysis of the evolution of a
particular subsystem that exhibits interesting character-
istics.

3.2 The Evolution of Subsystem C

So far the examination was based on the whole system
and gave an impression of how the overall system has
evolved over time. In this section, we will examine
Subsystem C in more detail, show how its modules evolve
and if it evolves the same way as the whole system.

Subsystem C is taken as an example because it exhibits
the highest growing and one of the highest changing rates
among all subsystems (see Table 1). These characteristics
make Subsystem C the most likely candidate for
restructuring or even reengineering activities.

in Proceedings of the International Conference on Software Maintenance 1997 (ICSM ’97)

- 5 -

Subsystem changing rate (%) growing rate (%)

A 11 18
B 16 18
C 25 193
D 5 78
E 8 8
F 33 -25
G 29 157
H 20 3

Table 1 Changing and growing rates of subsystems

Subsystem C consists of three modules called Module
A, Module B and Module C (see Diagram 1).

Sizes of the modules

in Subsystem C

Module B
13%

Module C
4%

Module A
83%

Diagram 5: Module sizes in Subsystem C

Diagram 5 shows the relative sizes of the modules of
Subsystem C in the latest release examined. It shows that
Module A covers about 80 percent of Subsystem C.
Compared to this module, the sizes of the two other
modules are relatively small. In release 8.00, Module A
consists of 406 programs representing one sixth of the
number of programs in the whole system. This module is
even larger than some subsystems.

sizes of modules in Subsystem C

0
50

100
150
200
250
300
350
400
450

"1
.0

0"

"2
.0

0"

"3
.0

0"

"4
.0

0"

"5
.0

0"

"6
.0

0"

"6
.0

1"

"6
.0

2"

"6
.0

3"

"6
.0

4"

"6
.0

5"

"6
.0

6"

"6
.0

7"

"6
.0

8"

"6
.0

9"

"6
.1

0"

"6
.1

1"

"6
.1

2"

"7
.0

0"

"8
.0

0"

releases

of

 p
ro

gr
am

s

Module A
Module B
Module C

Diagram 6: Sizes of the modules for all releases in
Subsystem C

Diagram 6 shows the growing rates of the three
modules. At first glance it can be seen that Module A has
the highest growing rate. Initially it consisted of 129
programs, and at the end of 406 programs. This means
that its size increased by about 220 percent which
represents the highest growing rate in the whole system.
In this diagram it seems that Modules B and C have a low
growing rate. This impression is misleading since the
large size of Module A distorts the view. With 110 and 70
percent, respectively, the growing rates of Modules B and
C are among the highest of all modules.

0

50

100

150

200

250

A B C

Changing
rates (%)

Growing
rates (%)

Diagram 7 Changing and growing rates of
Subsystem C's modules

Diagram 7 shows the changing and growing rates of
the three modules of Subsystem C from release 2.00 to
release 8.00. Modules B and C have a changing rate of 84
and 92 percent, respectively. These are the two highest
changing rates of the system. In contrast to them, Module
A has a relatively low changing rate of 11 percent.

in Proceedings of the International Conference on Software Maintenance 1997 (ICSM ’97)

- 6 -

Changing rates of modules in Subsystem C

-20

0

20

40

60

80

100

120

"2
.0

0"
"3

.0
0"

"4
.0

0"
"5

.0
0"

"6
.0

0"
"6

.0
1"

"6
.0

2"
"6

.0
3"

"6
.0

4"
"6

.0
5"

"6
.0

6"
"6

.0
7"

"6
.0

8"
"6

.0
9"

"6
.1

0"
"6

.1
1"

"6
.1

2"
"7

.0
0"

"8
.0

0"
releases

pe
rc

en
ta

ge Module A
Module B
Module C

Diagram 8: Changing rates in Subsystem C

Diagram 8 shows the detailed changing rates of the
three modules of Subsystem C over all releases. Whereas
the changing rate decreases over time in Module A, it is
always high in Modules B and C.

4 Interpretation of the data

In this section we summarize the characteristics of the
TSS system that we have observed on the system and
subsystem levels.

The development of the whole system becomes stable
over the twenty releases examined. The changing and
growing rates decrease as do the number of added
programs per release. From a system point of view the
structure seems fine.

By examining the subsystems, the picture of the system
changes significantly. There are subsystems that exhibit a
completely different behavior than the whole system and,
therefore, offer a high potential for restructuring or even
reengineering. In this paper we focused on a discussion of
Subsystem C because its behavior is different from the
other subsystems.

Subsystem C is characterized by a high growing rate
and a high changing rate. Its modules continuously grow
from one release to the next. For a detailed interpretation
of Subsystem C we take a closer look at its modules.

Module A is growing fast and has become the largest
module of the system; it is even larger than some
subsystems which obviously makes it a candidate for
redesign. Compared to the other modules, Module A has a
remarkably low changing rate (only 11 percent). The
number of the existing programs that have been changed
is small, whereas many new programs have been added.

Furthermore, many programs in Module A have similar
names that only differ in their endings. This indicates that
newly added programs are often the result of copying and
slightly modifying already existing programs and,
therefore, they probably provide similar functionality.

By asking the developers we discovered that Module A
contains system configuration information and that new
configurations are often developed by copying existing
programs and then making the required changes. This fact
explains the high growing and the low changing rate.
Since this module is extensively customized, a different
concept to handle various configurations of the system is
required. Module A is therefore a candidate for redesign.

Modules B and C both have a high growing and
changing rate which are among the highest in the system.
The changing rates are high for all releases meaning that
almost every change affects these modules. Because of the
size of Subsystem C and the characteristics of the
changing rates of its modules, the likelihood that future
changes will affect Subsystem C and—as a con-
sequence—Modules B and C is high. Modules B and C
are, therefore, also candidates for redesign.

5 Conclusions and Future Work

We examined the structure of several releases of a
Telecommunications Switching Software (TSS) that has
been stored in a database of product releases. We tracked
this historical information of the TSS in order to identify
potential shortcomings of its structure. For this we
examined the TSS on different levels: the system and the
subsystem level.

A major result of our investigations is the difference in
the behavior of the whole system versus its subsystems:
Although a stable development of the whole system could
be observed over time (reduced changing and growing
rates), the evolution of Subsystem C showed completely
different characteristics. It exhibits high changing and
growing rates over almost all releases. We discovered that
such a development is masked by viewing the whole
system.

One particular module of the system was identified to
represent one sixth of the whole system. This module
turned out to be the most interesting for redesign because
of its continuous growth and its changing characteristics.
We identified other modules that are often subject to
changes and therefore offer a high potential for
restructuring or reengineering.

A database of product releases that contains structural
information about the system is valuable for every
software engineering group. It allows informed

in Proceedings of the International Conference on Software Maintenance 1997 (ICSM ’97)

- 7 -

management decisions, for example, assessment of
maintenance costs, personnel planning, release
scheduling, etc.

Additional information that would be valuable to be
included in the database is the kind of change performed
in a release (corrective, adaptive, perfective, or preventive
maintenance as described in [16]). It would be useful to
correlate the behavior of the evolution to the kinds of
changes.

We believe that software evolution observations based
on release history information opens up a whole area of
research. Such structural information about a system is
obtained relatively easily (during compile time prepro-
cessors extract the required information from the source
code and store it in the PRDB) and valuable for the
software engineers to identify potential shortcomings of
their system.

Future work will concentrate on the extension of the
PRDB in order to include more detailed information. Our
focus is not on source code analysis per se, but primarily
on the derivation of software quality attributes and their
assessment. Several of our observations are to be verified
by using additional information such as defect repair
requests or enhancement requests. Scientific visualization
techniques may also be useful in uncovering patterns in
the system evolution.

6 Acknowledgements

This work was supported by the European Commission
within the ESPRIT Framework IV project ARES
(Architectural Reasoning for Embedded Systems).

We would like to thank Alexander Gurschler for his
data gathering and analysis and Wolfgang Lugmayr for
his support in setting up the database at our department.
We also thank the anonymous referees for their helpful
comments and suggestions.

7 References

[1] Arnold R. S., “Software Reengineering,” Proceedings,
IEEE Computer Society Press, Los Alamitos, CA, 1993.

[2] Baker M.J. and Eick S.G., “Visualizing Software
Systems,” AT&T Bell Laboratories, 1994.

[3] Ball T. and Eick S.G., “Software Visualization in the
Large,” IEEE Computer, Vol. 29, No. 4, pp. 33-43, April
1996.

[4] Choi S.C. and Scacchi W., “Extracting and Restructuring
the Design of Large Systems,” IEEE Software, pp. 66-
71, January 1990.

[5] Chuah M.C. and Eick S.G., “Glyphs for Software
Visualization,” International Workshop on Program
Comprehension, pp. 183-191, May 1997.

[6] Daskalantonakis M.K., “A Practical View of Software
Measurement and Implementation Experiences Within
Motorola,” IEEE Transactions on Software Engineering,
Vol. 18, No. 11, pp. 998-1010, November 1992.

[7] Ebert C., “Correspondence Visualization Technique for
Analyzing and Evaluating Software Measures,” IEEE
Transactions of Software Engineering, Vol. 18, No. 11,
pp. 1029-1034, November 1992.

[8] Eick S. G., Steffen J. L., and Summer E. E. Jr., “Seesoft-
A Tool For Visualizing Line Oriented Software
Statistics,” IEEE Transaction on Software Engineering,
Vol. 18, No. 11, November 1992.

[9] Gefen D. and Schneberger S.L. “The Non-Homogeneous
Maintenance Periods: A Case Study of Software Modifi-
cations,” International Conference on Software Main-
tenance, pp. 134-141, November 1996.

[10] Griswold W.G. and Notkin D., “Automated Assistance
for Program Restructuring,” ACM Transactions on
Software Engineering and Methodology, Vol. 2, No. 3,
pp. 228-269, July 1993.

[11] Kazman R., Bass L., Abowd G., and Webb M., “SAAM:
A Method for Analyzing the Properties of Software
Architectures,” Proceedings of ICSE 16, Sorento, Italy,
pp. 81-90, May 1994.

[12] Khoshgoftaar T., Allen E.B., Kalaichelvan K.S., and
Goel N., “Early Quality Prediction: A Case Study in
Telecommunications,” IEEE Software, Vol. 13, No. 1,
pp. 65-71, January 1996.

[13] Khoshgoftaar T.M. and Halstead R., “Detection of Fault-
Prone Software Modules During a Spiral Life-Cycle,”
International Conference on Software Maintenance, pp.
69-76, November 1996.

[14] Lehman M.M., “Programs, life cycles and laws of
software evolution,” Proceedings of the IEEE, pp. 1060-
1076, September 1980.

[15] Lehman M.M. and Belady L. A., Program evolution,
Academic Press, London and New York, 1985.

[16] Lientz B.P. and Swanson E.B., Software Maintenance
Management, Addison-Wesley, 1980.

[17] Ohlsson N. and Alberg H., “Predicting Fault-Prone
Software Modules in Telephone Switches,” IEEE
Transactions on Software Engineering, Vol. 22, No. 12,
pp. 886-894, December 1996.

[18] Parnas D.L., “Software Aging,” Proceedings of ICSE 16,
Sorento, Italy, pp. 279-287, May 1994.

[19] Pearse T. and Oman P., “Maintainability Measurements
on Industrial Source Code Maintenance Activities,”
International Conference on Software Maintenance, pp.
295-313, October 1995.

[20] Perry A. E., and Wolf A. L., “Foundations for the Study
of Software Architecture,” Software Engineering Notes,
ACM SIGSOFT, Vol. 17, No. 4, pp. 40-52, October
1992.

[21] Sarma A., “Introduction to SDL-92,” Computer
Networks and ISDN Systems, Elsevier Science Pub-
lishers, Vol. 28, No. 12, pp. 1603-1615, June 1996.

in Proceedings of the International Conference on Software Maintenance 1997 (ICSM ’97)

- 8 -

[22] Shaw M., and Garlan D., Software Architecture:
Perspectives on an Emerging Discipline, Prentice-Hall,
1996.

[23] Turski W.M., “Reference Model for Smooth Growth of
Software Systems,” IEEE Transactions on Software
Engineering, Vol. 22, No. 8, pp. 599-600, August 1996.

