
3 4 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

Projects that claim to be open source have
many varying characteristics. To demonstrate
this, we investigated 80 open source projects:
several large, well-known projects, such as
Linux, Apache, and Mozilla, and some smaller
ones. We reviewed published materials about
open source, notably The Cathedral and the
Bazaar,1 Rebel Code,2 and Open Sources,3 as
well as other works.4–10 We also used several
online resources dedicated to open source proj-
ects, such as SourceForge (http://sourceforge.
net) and Geocrawler (www.geocrawler.com).
In addition, we interviewed 12 individuals who

either work on open source projects in their
free time or are involved with open source as
part of their job in large corporations.

From there, we further dissected open
source by determining the characteristics that
open source projects usually have or should
have. We determined a set of characteristics
that are almost always present and others that
vary among open source projects. By exposing
these characteristics, we’ve created a taxon-
omy against which you can compare any proj-
ect’s characteristics. Additionally, these char-
acteristics demonstrate that just stating that a
project is open source doesn’t necessarily pre-
cisely define the approach used to support the
project.

A multidisciplinary approach
Software development is a complex process

that draws upon knowledge and expertise

focus
The Many Meanings of
Open Source

T
he term “open source” frequently refers to a software develop-
ment process that relies on the contributions of geographically
dispersed developers via the Internet. One basic requirement of
an open source project is the availability of its source code, with-

out which the software’s development or evolution is difficult, if not im-
possible. But apart from these characteristics, some confusion exists on
what an open source project actually is.

developing with open source software

A multidisciplinary viewpoint can help determine those
characteristics that are common to all open source projects
and those that vary among projects. Consequently, they provide
a starting point for understanding what “open source” means.

Cristina Gacek and Budi Arief, University of Newcastle upon Tyne

from many scientific disciplines. So, to under-
stand it better, we need to take into account its
interdisciplinary nature. Open source software
development is no exception to this rule. In
determining the relevant open source charac-
teristics, we considered these disciplines:

� Computing science covers the technical as-
pects of open source projects.

� Management and organization deals with
managerial issues and how they relate to
the projects.

� The social sciences address areas related
to the communities involved in the proj-
ects and their behavior.

� Psychology accounts for the characteristics
of the individuals involved in the projects.

� Economics looks into the economic mod-
els that underlie the projects or corpora-
tions with respect to their involvement in
the projects.

� Law focuses on legal issues.

One thing that stands out from our study is
that “open source” is not a precise term. Some
characteristics exist in all open source proj-
ects, but there are even more characteristics
that might vary considerably from project to
project.

Common characteristics
Although thousands of projects are classified

as open source, they all share only two main
characteristics: they adhere to the Open Source
Definition, and developers are always users.

Adherence to the OSD
The Open Source Initiative composed the

OSD (www.opensource.org/docs/definition.
html) as a guideline to determine whether
a particular software distribution is open
source. The OSD outlines three main criteria:

� The ability to distribute the software freely
� The source code’s availability
� The right to create derived works through

modification

Six more criteria deal with licensing issues
and spell out the requisite “no discrimination”
stance. (That is, anyone may use this software,
for any field of endeavor.) All nine criteria
listed under the OSI definition of open
source—most prominently source code avail-

ability—are the basic requirements for proj-
ects to qualify as open source.

For more on the OSD and other attempts
to investigate open source characteristics, see
the sidebar.

Developers are users
The people who contribute code to an open

source project are always users of the code
produced. This means that open source devel-
opers are a subset of the open source user

J a n u a r y / F e b r u a r y 2 0 0 4 I E E E S O F T W A R E 3 5

The Open Source Initiative provides an Open Source Definition (www.
opensource.org/docs/definition.html), which asserts nine criteria for open
source software. (See the section “Adherence to the OSD” in the main arti-
cle for more on the criteria). The OSD addresses legal issues extensively and
encompasses some economic aspects. However, it hardly touches on com-
puting science, and it completely ignores psychology, social sciences, and
management issues. Furthermore, there’s no guarantee that a given project,
by simply adhering to the OSI definition of open source, benefits from the
positive effects usually associated with open source (for example, being re-
viewed by many people).

The open source software characteristics that Huaiqing Wang and Chen
Wang proposed address some technical aspects and, in less depth, legal
and managerial aspects.1

Andrea Capiluppi, Patricia Lago, and Maurizio Morisio analyzed a sam-
ple of 400 open source projects.2 They addressed only technical issues, such
as the project’s age, application domain, size, modularity and documenta-
tion levels, popularity, and vitality.

Sandeep Krishnamurthy3 gathered statistics from the top 100 projects on
SourceForge. He focused on the size of the project’s community, the project’s
age, and the associated number of downloads and official messages, look-
ing for correlations between them.

Joseph Feller and Brian Fitzgerald noted that although OSI certification is
useful, it couldn’t be considered an essential part of the definition of open
source.4 They applied an analytical framework to understand open source
by the type of products, process used, stakeholders, environment, and moti-
vations. Although their research is very interesting, their set of characteristics
isn’t as rich as the one we propose in this article. Also, they didn’t explore
the commonalities versus variabilities among open source projects.

References
1. H. Wang and C. Wang, “Open Source Software Adoption: A Status Report,” IEEE Soft-

ware, vol. 18, no. 2, Mar./Apr. 2001, pp. 90–95.
2. A. Capiluppi, P. Lago, and M. Morisio, “Characteristics of Open Source Projects,” Proc. 7th

European Conf. Software Maintenance and Reengineering (CSMR 03), IEEE CS Press, 2003,
pp. 317–330.

3. S. Krishnamurthy, “Cave or Community? An Empirical Examination of 100 Mature Open
Source Projects,” First Monday, vol. 7, no. 6, June 2002, www.firstmonday.dk/issues/
issue7_6/krishnamurthy.

4. J. Feller and B. Fitzgerald, Understanding Open Source Software Development, Addison-
Wesley, 2002.

Related Work

community. That is, all open source develop-
ers are users, but not all users are developers
(see Figure 1).

Variable characteristics
We found these variable characteristics:

project starting points, motivation, commu-
nity, software development support, licensing,
and size.

Project starting points
Open source projects might start from

scratch or from existing commercial or re-
search closed-source software systems. All the
projects we studied converted closed-source
software to open source software at once.
Nevertheless, you could envision some closed-
source software making a gradual transition
to open source, one part (for example, a sub-
system) at a time.

Motivation
The biggest question surrounding the open

source phenomenon is, why do people do it?
Why would people contribute code for free?
The answer isn’t as straightforward as you
might think. Contributors, whether individu-
als or corporations, contribute to satisfy a per-
ceived need. Individuals usually contribute for
personal satisfaction; some have strong philo-
sophical beliefs about the resulting software’s
openness, while others don’t care as much
about such issues. Corporations usually get in-
volved to gain market share or undermine
their competitors, or they simply use open

source software so that they won’t have to
build an equivalent product from scratch.

Peer recognition also motivates contribu-
tions. When the community involved recog-
nizes the contribution of individuals or cor-
porations as appropriate and of good quality,
their status increases within the given proj-
ect. Consequently, others will consider their
opinions more carefully with respect to proj-
ect-related decisions, and their reputation
might improve even outside the project
boundaries.

Depending on the domain that an open
source project addresses, different business
models might motivate the involvement of
corporations, researchers, individual develop-
ers, and end users. So far, we’ve identified
three business models:

� Software for own use
� Packaging and selling of the software
� A platform or foundation for commercial

or research software development

Community
Active open source projects usually have a

well-defined community with common inter-
ests that’s involved either in continuously
evolving its related products or in using its re-
sults. However, many open source projects
have no clear community structure or involve
just one person (as is the case in many Source-
Forge projects).

This characteristic involves two issues: bal-
ance of centralization and decentralization
and meritocratic culture.

Balance of centralization and decentralization.
Some communities have a strict hierarchy dif-
ferentiating various levels of developers (see
Figure 1); others have a much looser structure.

The strict hierarchies bring with them a
more centralized power structure. For exam-
ple, the core developers have more power than
ordinary codevelopers in making executive de-
cisions. Some open source projects (for exam-
ple, Apache) even have more than two levels
of developers.

Looser organizational structures have all
their developers on the same level. This im-
plies decentralized decision making, which
sometimes is based on full consensus.

Meritocratic culture. The basic model underly-

3 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Transition

Transition

Reporting
bugs

Suggesting
new features

Reviewing
code

Modifying
code

Making
decisions

Implementing
new features

Fixing
bugs

Transition

Core developersCodevelopers

Active users
(contributors)

Passive
users

Users

DevelopersNondevelopers

Figure 1. A classification
of open source users
and developers.

ing open source projects is that knowledge
shown through contributions increases the con-
tributor’s perceived merit, which in turn leads
to power. Exactly how this transition takes
place varies from project to project in terms of
timing and the obstacles to overcome, and de-
pends on the project’s organizational structure.

For example, Figure 1 shows the possible
transition from passive to active users when
they start contributing to the project. If they
can then show their ability (or if they can gain
respect from the community), they might be
invited into the developer group. There, they
would have greater rights over the code (for
example, to incorporate their own modifica-
tions into the code base). In some projects,
codevelopers can be promoted to the core de-
veloper group. Transitions can also go the
other way. For example, a core developer
might wish to resign and become a codevel-
oper instead (or even leave the project com-
pletely), owing to other commitments or a per-
sonality clash.

Software development support
Open source software development requires

support similar to that for traditional software
development. It also requires support for spe-
cific needs generated by the (potentially) numer-
ous highly distributed developers.

Modularity. Modular design’s benefits are well
established in all engineering disciplines; it sup-
ports increased understanding during design
and concurrent allocation of work during im-
plementation. Because open source develop-
ment is globally distributed, well-defined inter-
faces and modularized source code are a
prerequisite for effective remote collaboration.11

Visibility of software architecture. A comput-
ing system’s software architecture depicts its
structure and comprises its software compo-
nents, the components’ externally visible
properties, and their relationships.12 An open
source software system’s architecture might be
available or not. An unintentionally unavail-
able software architecture suggests that the
structure exists in some people’s minds only.

Documentation and testing. Documentation
and testing are important aspects of software
development. Good documentation allows
people to use—and more specifically in open

source projects, to understand and modify—
the software. Thorough testing gives users
(and developers) confidence that the software
will function as expected.

These two areas are often overlooked or
vary widely during open source development.
Open source contributors tend to be more in-
terested in coding than documenting or testing.
This is probably because open source tries to
replace the formal testing process with the
“many eyeballs” approach to eliminating bugs.
Also, developers often feel that adding com-
ments in the source code is sufficient docu-
mentation. There have been some attempts to
address the lack of documentation—for exam-
ple, the Linux Documentation Project (www.
tldp.org) and Mozilla Developer Documenta-
tion Web page (www.mozilla.org/docs). How-
ever, this is still a rarity for smaller open source
projects. In addition, we’ve yet to find some
sort of testing strategies for open source proj-
ects. They might exist, but if so, they’re im-
plicit and they aren’t visible outside the proj-
ect’s developer community.

Accepting submissions. An open source proj-
ect evolves by receiving submissions from var-
ious sources to address the project’s various
aspects. The most common submissions are
bug reports and source code; others include
documentation and test cases. Furthermore,
open source projects often post the areas for
which they want to receive submissions. Con-
sequently, they might receive multiple concur-
rent submissions addressing the exact same
area. So, open source projects have in place
processes for accepting various types of sub-
missions, while clearly specifying how to han-
dle multiple concurrent submissions.

The process of accepting submissions com-
prises three facets. The first is choosing the
work area. As we just mentioned, open source
projects often request contributions to specific
areas. Some projects will process both so-
licited and spontaneous contributions, where-
as other open source projects might tend to ig-
nore spontaneous contributions.

The second facet is decision making, which
relies on four dimensions:

� The quality goals
� The acceptance criteria
� The decision group’s cognitive abilities
� The project’s social structure

J a n u a r y / F e b r u a r y 2 0 0 4 I E E E S O F T W A R E 3 7

Open source
software

development
requires

support similar
to that for
traditional
software

development.

Quality goals vary widely from one project
to another; this can happen even in the same
application area (for example, one project fo-
cusing on performance and another on porta-
bility). Acceptance criteria also vary. Example
criteria include the best solution out of the
first n submissions, an aggregation of multiple
submissions (even by requesting that someone
changes his or her solution to add an aspect
seen elsewhere), some memory of previous
submissions by the same person, or the first
submission received. Additionally, the ability
to recognize better solutions depends highly
on the decision group’s cognitive abilities. This
implies that decision making for accepting
submissions varies among projects and poten-
tially within projects, unless the same people
help make all the decisions.

The social structure might be a defined hi-
erarchy where different groups of people eval-
uate different submissions (for example, by fo-
cus area), or where some people exercise
greater power, or both. Or, the structure might
be a monolithic group consisting of all devel-
opers. The social structure directly affects de-
cision making. If the group is monolithic, it
might use consensus or majority vote to accept
submissions. If a different social structure ex-
ists, consensus or majority voting might also
apply, but at times some members’ votes will
count more than others’.

The third facet is disseminating the submis-
sion information. A project might passively
disseminate this information through news-
groups or comments in the code itself. It might
actively disseminate the information through
email and mailing lists. Or, it might devote
Web space to the information.

Tool and operational support. To facilitate con-
current software development and fast, con-
trolled evolution, most open source projects
implement some form of configuration man-
agement. They do this by using CVS (the Con-
current Versions System), other tools, or even

an ad hoc solution using Web-based support.
Communities related to specific projects

communicate almost exclusively by electronic
means, which they also use to organize their
work. The most common means are dedicated
mailing lists, newsgroups, and Web sites. The
exact structure and use of these means vary
among projects.

Licensing
Several types of licenses conform to the

OSD. Some ensure that if any of the software
code is used in other software development,
all the software will come under the terms of
that original license. Another aspect of these
licenses concerns whether they restrict distri-
bution of any of the original source code to bi-
nary form in future derived software products.
Table 1 illustrates how six of the more popu-
lar licenses implement these two features.

Size
Size is not a distinctive measure in open

source projects. The sizes of both the commu-
nity and the code base vary widely from proj-
ect to project.

Using the open source
characteristics

We’ve used these characteristics to describe
nine existing open source projects: Linux,
Topologilinux, Frozen Bubble, Tux Typing,
Mozilla, Bugzilla, Apache, Project @ssistant,
and JUnit (all available via SourceForge).
We’re investigating several other projects with
the intent of populating an extensive database
of projects enabling us to investigate correla-
tions among these characteristics. We’ll also
use this database to determine possible corre-
lations between project characteristics and the
developed software’s reliability.

Clearly, open source projects’ characteris-
tics can vary greatly, but that’s true of all soft-
ware projects. Table 2 shows how our taxon-
omy of characteristics applies to both open
source and traditional projects.

Observations
Interesting observations abound regarding

open source projects, but few studies of em-
pirical data have confirmed them. Here are
some things we observed in our research.

One expert we interviewed claimed that
considerably greater activity occurs in the

3 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Table 1
Varying characteristics of open source licenses

Does it impact Can it be
Licenses derived works? closed?

GPL (GNU General Public License) Yes No
LGPL (GNU Lesser GPL) No No
BSD (Berkeley Software Distribution) License No Yes
QPL (Q Public License) No No
IBM Public License No Yes
MPL (Mozilla Public License) No Yes

Northern Hemisphere during winter. (He said
that during the summer months, people tend
to spend more time traveling on vacation and
enjoying the outdoors.) We noticed that as the
number of developers grows in a project, a
more structured hierarchy is implemented.

Because developers are users, a lightweight
requirements-engineering approach is possi-
ble. Additionally, many people believe that
open source projects react more promptly to
problems (for example, resolving a security
flaw). However, for centralized organizations
that use open source software, ensuring that
the latest patch is installed everywhere is close
to impossible.

Having no contractual deadlines can be a
problem for organizations relying on open
source projects as a platform for software de-
velopment. The danger of forking exists in
open source projects, but no one knows how
often this really happens or what characteris-
tics usually enable this situation. (Forking is
the evolution of two or more separate strands
of work from the original code base.)

Few projects involve more than 20 devel-
opers, and many hundreds of projects involve
just one developer. This implies that you can’t
rely on the number of coders or reviewers to
maintain code quality. The developers’ matu-
rity and profile also vary greatly.

Several empirical studies have started to ad-
dress some of these observations. Andrea
Capiluppi, Patricia Lago, and Maurizio Mori-

sio found that the number of developers per
project is typically low (one or two) and that a
project’s evolution is usually slow.9 Efforts
tend to be spent on “big” projects such as
Linux and Apache, which probably aren’t “av-
erage” open source projects. Sandeep Krishna-
murthy also reports that individuals, rather
than communities, develop most open source
projects.8 These findings clearly indicate the
need for further empirical studies.

Future work
Many issues remain about understanding

and exploiting the open source approach.
Questions that we’d like to investigate further
include these:

� Does open source foster more dependable
software development? If so, how?

� As we mentioned before, one claimed ad-
vantage of software products developed as
open source is that many reviewers exam-
ine the code. So, can more reviews replace
formal analysis as a guarantee of depend-
ability?

� What are the mutual influences between
software architecture and group structure
in open source software development?

� Does the software architecture decay
faster in open source software?

� Who takes responsibility if something
goes wrong when someone uses an open
source product?

J a n u a r y / F e b r u a r y 2 0 0 4 I E E E S O F T W A R E 3 9

Table 2
Open source and traditional software project characteristics

Open source Traditional
Characteristic Common Variable Common Variable

Adherence to the Open Source Definition ✔ N/A N/A
Developers are users ✔ ✔

Starting points ✔ ✔

Motivation ✔ ✔

Community
Balance of centralization and decentralization ✔ ✔

Meritocratic culture ✔ ✔

Software development support
Modularity ✔ ✔

Visibility of software architecture ✔ ✔

Documentation and testing ✔ ✔

Accepting submissions
Choosing the work area ✔ ✔

Decision making ✔ ✔

Disseminating the submission information ✔ N/A N/A
Tool and operational support ✔ ✔

Licensing ✔ ✔

Size ✔ ✔

We also plan to look into statistical infor-
mation regarding open source software. In ad-
dition, we’ll run controlled experiments to iso-
late and validate our assumptions and those
from the community at large.

F igure 2 summarizes our set of open
source characteristics. We understand
that no one will ever be able to gener-

ate an absolute taxonomy. Because of varia-
tions from one open source project to another,
additional variable characteristics might exist.
However, our list provides a starting point for
understanding open source and its many
meanings and can be useful for both analyzing
and setting up projects.

Acknowledgments
The UK Engineering and Physical Sciences Research

Council’s Dependable Interdisciplinary Research Col-
laboration project (www.dirc.org.uk) partly funded this
article. We thank Tony Lawrie for his involvement in
the research leading to this article, the volunteers who

shared their experiences with us, our colleagues from
the DIRC project who participated in various fruitful
discussions, and our students for their various contribu-
tions. These include Denis Besnard, Diana Bosio, Julian
Coleman, Mike Ellison, David Greathead, Cliff Jones,
Brian Randell, Lorenzo Strigini, and Stuart Wheater. We
also thank the anonymous reviewers for their useful
feedback.

References
1. E.S. Raymond, The Cathedral and the Bazaar: Musings

on Linux and Open Source by an Accidental Revolu-
tionary, O’Reilly & Associates, 1999.

2. G. Moody, Rebel Code: Linux and the Open Source
Revolution, Perseus Publishing, 2001.

3. C. Dibona, M. Stone, and S. Ockman, Open Sources:
Voices from the Open Source Revolution, O’Reilly &
Associates, 1999.

4. J. Feller and B. Fitzgerald, Understanding Open Source
Software Development, Addison-Wesley, 2002.

5. J. Feller and B. Fitzgerald, “A Framework Analysis of
the Open Source Software Development Paradigm,”
Proc. 21st Int’l Conf. Information Systems, ACM Press,
2000, pp. 58–69.

6. A. Mockus, R.T. Fielding, and J. Herbsleb, “A Case
Study of Open Source Software Development: The
Apache Server,” Proc. 22nd Int’l Conf. Software Eng.
(ICSE 2000), ACM Press, 2000, pp. 263–272.

7. B.J. Dempsey et al., “A Quantitative Profile of a Com-
munity of Open Source Linux Developers,” tech. report
TR-1999-05, School of Information and Library Sci-
ence, Univ. North Carolina at Chapel Hill, 1999.

8. S. Krishnamurthy, “Cave or Community? An Empirical
Examination of 100 Mature Open Source Projects,” First
Monday, vol. 7, no. 6, June 2002, www.firstmonday.
dk/issues/issue7_6/krishnamurthy.

9. A. Capiluppi, P. Lago, and M. Morisio, “Characteristics
of Open Source Projects,” Proc. 7th European Conf.
Software Maintenance and Reengineering (CSMR 03),
IEEE CS Press, 2003, pp. 317–330.

10. H. Wang and C. Wang, “Open Source Software Adop-
tion: A Status Report,” IEEE Software, vol. 18, no. 2,
Mar./Apr. 2001, pp. 90–95.

11. T. Bollinger et al., “Open-Source Methods: Peering
through the Clutter,” IEEE Software, vol. 16, no. 4,
July/Aug. 1999, pp. 8–11.

12. L. Bass, P. Clements, and R. Kazman, Software Archi-
tecture in Practice, Addison-Wesley, 1998.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

4 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

VariableCommon

Developers are users

Motivation

Starting points

Licensing

Size

Community

Balance of centralization
and decentralization

Meritocratic culture

Modularity

Documentation
and testing

Visibility of
software

architecture

Tool and operational support

Software development supportAdherence to OSD

Accepting submissions

Choosing the work area

Decision making

Disseminating the
submission of information

Figure 2. A taxonomy
of open source
characteristics.

About the Authors

Cristina Gacek is a lecturer at the University of Newcastle upon Tyne’s School of Com-
puting Science. Her research interests include software architectures and product lines to sup-
port the engineering of complex software systems, with a focus on improving their dependabil-
ity. She received her PhD in computer science from the University of Southern California. She’s
a member of the IEEE and the ACM. Contact her at the School of Computing Science, Univ. of
Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, UK; cristina.gacek@ncl.ac.uk.

Budi Arief is a research associate at the School of Computing Science of the University of
Newcastle upon Tyne. He’s working on the UK Engineering and Physical Sciences Research Coun-
cil’s Dependable Interdisciplinary Research Collaboration project. His research interests include
open source and free software, human aspects of computer-based systems, and computer secu-
rity. He received both his bachelor’s of computing science and his PhD in computing science from
the University of Newcastle upon Tyne. Contact him at the School of Computing Science, Univ. of
Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, UK; l.b.arief@ncl.ac.uk.

	footer1:

