Apples Vs. Oranges? An exploration of the challenges of
comparing the source code of two software systems.

Daniel M. German

Julius Davies

Department of Computer Science, University of Victoria, Canada

dmg@uvic.ca

ABSTRACT

We attempt to compare the source code of two Java IDE
systems: Netbeans and Eclipse. The result of this experi-
ment shows that many factors, if ignored, could risk a bias
in the results, and we posit various observations that should
be taking into consideration to minimize such risk.

1. QUESTIONS ADDRESSED

Ever since the beginning of empirical software engineering,
we have dreamed of experiments in which large, industrial-
quality, equivalent software systems are compared, with the
goal of minimizing the threats to validity. The competi-
tive nature of open source software, where similar products
fight against each other in attempts to maximize market
share, has provided natural (and observable) experiments
where this dream can be realized. It is not hard to find re-
search comparing the BSD-kernels, Linux and Android; or
MySQL and PostgreSQL. There is, however, lack of research
on the challenges that arise with such comparisons, and the
consequent traps that researchers risk falling into. In this
MSR challenge report, we compare the source code of two in-
dustrial grade Integrated Development Environments (IDE):
Netbeans, developed by Oracle Corporation, and Eclipse, de-
veloped by the Eclipse Foundation. In the same spirit as
[1], our goal is not to identify how similar or different they
are, but to identify differences that, if not taken into con-
sideration, might result in biased, and potentially erroneous
conclusions.

2. INPUT DATA

For this study we used the source code of Netbeans and
Eclipse IDEs from two different sources: their version con-
trol (VC) repositories, and their source code packages as
made available in Ubuntu 10.10.

1. VC repositories. We downloaded the CVS (Eclipse)
and Mercurial (Netbeans) snapshots offered through

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MSR *2011 Waikiki, Honolulu, Hawaii

Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

juliusd@uvic.ca

the MSR conference website' for the Mining Chal-
lenge. To the best of our knowledge, these contained
complete version history for both Netbeans and Eclipse
up to June 1st, 2010.

2. Ubuntu packaged sources. We downloaded the
source packages for Ubuntu 10.10 from Canonical’s
archive 2. These original sources are usually present
in the archive as .tar.gz files. We used version 3.5.2
of Eclipse and version 6.5 of Netbeans.

3. RESULTS AND INTERPRETATION

3.1 Version control or Source Distribution, what
do we compare?

In the version control (VC) repository of Eclipse there
are 60,300 Java source files. Are all these files part of the
Eclipse SDK, as we know it? Can we directly compare
their development to one of the source code files in the Net-
beans VC repository? The Eclipse IDE is developed by the
Eclipse Foundation, and its source code lives in the only VC
repository of the Foundation. We could expect to see other
projects under the Eclipse Foundation umbrella to be stored
in the same VC.

In contrast, Netbeans is one of many open source products
developed by Oracle. Before we can compare the VC and
defect repositories of each, we need to better understand
how the IDEs source code relates to the source code files
stored under their corresponding VC repository.

Unfortunately, knowing which files are part of either IDE
is not trivial. Both IDEs offer several versions, configured
with different features. To simplify our analysis, we use as
proxies the source code bundles created by Canonical, from
which its Ubuntu binaries are created. These bundles (tar
files) are created from the same files under their VC reposi-
tories, but contain only what is necessary to build, test and
run either IDE under Linux—as decided by Canonical. We
used Ubuntu 10.10’s source code bundles: version 3.5.2 of
Eclipse (eclipse_3.5.2.orig—eclipse.tar.bz2), and version
6.5 of Netbeans (netbeans_6.5.orig.tar.gz). While these ver-
sions are configured only for Linux, we presume that they
are configured in such a way as to provide a similar experi-
ence to its users. Furthermore, we will use these bundles as
a starting point for further analysis, reducing the threat to
validity incurred by making such choice.

"http://www.msrconf . org/
Zhttp://archive.ubuntu. com/ubuntu/pool/universe/

Eclipse’s source code bundle for Ubuntu contains only
16,361 different Java source files (compared to 60,300 in its
VC repository). In other words, the packaged source code
contains only 27% of the files under Eclipse’s VC repository.
Similarly, the Netbeans repository contains 53,360 Java files,
and the Ubuntu’s source code bundle contains only 14,330
(27% of the files).

If we start from the assumption that the files in the source
archive are the ones truly required to build the binaries—at
least under Linux—then what are the other 73% of the files
in the version control system of these products? And per-
haps equally important, can we gain any insight into either
project and their development practises by inspecting the
files that are in the repositories but are not used to build
the IDEs.

Observation No. 1. The VC repository of a software
product might contain a large proportion of code that
is not required to build and run such product.

Neither Netbeans nor Eclipse have a simple directory or-
ganization of their VC repositories. Netbeans is composed
of almost 1,000 different top-level directories, while Eclipse
contains just under 500. A proper analysis of these top-level
directories is beyond the scope of this paper. A quick review,
however, sheds some light on their organization.

In Netbeans, of the 998 directories under VC, only 28%
are present in its source code archive (280). Of these 998,
827 directories contain Java source code files (239 in the
source archive). Even though Eclipse’s VC contains more
files than Netbeans, its VC repository is organized into fewer
directories: 462 directories (248 containing java source files—
3.4 times less than Netbeans and Eclipse contains 1.28 times
more Java files).

We were surprised to discovered that the source archive
of Eclipse is organized in a very different way than its VC
repository. The maintainers of the source code package have
reorganized the modules of Eclipse into a more meaningful
structure of only 4 directories, with only 2 containing Java
source code: ecf-src, and plugins. Under these two direc-
tories we found 199 directories, corresponding to top level
directories in the VC repository (43% of the top-level direc-
tories in the VC repository).

Observation No. 2. The logical structure of the
files that compose a product might not be reflected in
the way such files are organized in its VC repository.

Table 1 shows a comparison of the largest directories in
Netbeans, and the number of files found in the archive from
such directories. As it can be observed, the largest directo-
ries under VC are not present in the archive. The immediate
questions to ask is why? and What is in such directories?
A quick manual analysis of the largest directories, showed
that they are optional plugins. Whether a plugin should be
included (or not) in a runnable binary (such as it is done by
Ubuntu) is a decision that packagers do.

Observation No. 3. There might exist several po-
tential ways to package and build a software system,
each requiring a different subset of the source code.

Such variations might be a response to the environment
it will run (such as operating system support—Windows vs

Linux) or selected optional features. In some instances the
person creating such instance package is a member of the
development team; in others it might not—such as in Linux
distributions. Regardless, the corollary of observations 1 to
3 is that for a more accurate view of a software system and
its relationship between the runnable code (its binary) and
its source code (including its history) one needs to take into
account both, the version control repository, and the bundles
of source code used to build them.

Top-level directory | VC Source
Package
uml 2485
performance 1964
installer 753
bpel.editors 619
etl.editor 575
compapp.projects.jbi 557
java.source 526 467
form 515 503
java.editor 505 487
java.hints 484 327
jemmy 393

Table 1: Netbeans: Largest top-level directories (in
number of Java files) in the VC repository and
the number of the corresponding files in the source
archive. The module jemmy was not present in the
VC repository. The directories with files listed in
the Package are the largest in it.

As previously mentioned, we found that the number of
top-level directories in which Netbeans is broken down is re-
markably large (998). The distribution of the number of files
in the top directory of the VC repository of shows a median
of 26 files (with a first quartile of 8, and a third of 72), We
believe that a more in depth analysis of its architecture, and
how its developers work on them might highlight interesting
facts, such as if this is a way for them to minimize commu-
nication and a reflection of Conway’s law; or whether other
reasons are behind it. Nonetheless, we believe is it very hard
for any developer to keep track of the contents of so many
directories.

Table 2 compares the largest directories in Eclipse under
its VC repository and in the source archive. The median of
the number of files per top-level directory is 30 files (with a
first quartile of 9, and a third of 100). Even though these
numbers are close to those of Netbeans in the first two quar-
tiles, they grow faster for the third and forth quartile.

Similar to Netbeans, the largest directories (in terms of
source code files) under VC do not make it to the source
archive. However, the reasons are remarkably different. The
largest, e4, is where the development of core features of a
version 4.0 of Eclipse are being developed (hence they are
not part of the current distribution). The equinox-incubator
is an umbrella under which new products are being incor-
porated into Eclipse (usually projects already developed by
the community of Eclipse developers and users that others
consider worth of including into Eclipse). One can specu-
late that the Eclipse Foundation seems to be more eager to
experiment, and incorporate products from its community
than Oracle, but this requires further research.

Some top-level directories include some products that can

Top-level directory vC Source
Package
e4 9,264
equinox-incubator 8,739
org.eclipse.jdt.ui.tests.refactoring | 7,004
pde 5,074 916
org.eclipse.jdt.core.tests.model 4,500
pde-incubator 2,214
org.eclipse.jdt.ui 2,071 2,055
org.eclipse.swt 1,768 1,711
org.eclipse.ui.workbench 1,336 1,319
org.eclipse.jdt.core 1,182 1,190
org.eclipse.debug.ui 792 759

Table 2: Eclipse: Largest top-level directories (in
number of Java files) in the VC repository and
the number of the corresponding files in the source
archive. As it can be seen, the largest directories
are not in the package. The directories with files
listed in the Package are the largest in it.

be considered infrastructure needed to run Eclipse. Per-
haps the best known example is swt (the Standard Widget
Toolkit). swt competes directly with Oracle’s awt (Abstract
Window Toolkit) and swing (the primary Java GUI widget
toolkit)®. Oracle maintains a different repository for awt
and swing; and hence, it does not make sense to directly
compare Eclipse’s swing to any part of Netbeans. Nonethe-
less, the presence of swing under Eclipse provides interesting
clues into its evolution; for example, the inadequacy of awt
for Eclipse purposes, and the need of the Eclipse developers
to boostrap their own widget toolkit to fill that gap—before
swing was mature enough for production use. swt is clearly
independent and can be packaged as an separate product
(as is done by Ubuntu, under the name swt-gtk, where gtk
is the X11 widget systems upon which swt is based upon).
Other stand-alone products that are also stored in Eclipse’s
VC repository are aspecj and eclipse-emf (Eclipse’s mod-
eling framework) and eclipse-rse (Target Management to
administer remote systems). The fact that the Eclipse IDE
has given its name to its eponymous Foundation and its
repository can create confusion among researcher. Eclipse’s
VC repository contains products that are not part of the IDE
(such as aspectj) and infrastructure that one can debate is
part (or not) of the IDE such as swt.*

Observation No. 4. A VC repository might contain
several products that are not part of each other. Sim-
ilarly, an organization might split the source code of
one of its products into several VC repositories.

Of course, this does not mean that one cannot compare
Eclipse (including swt) against Netbeans (without swing).
The fact that Eclipse developers had to create a widget
toolkit from scratch is telling of important aspects of its
history (and the effort invested). The comparison, however,

3Originally developed by Sun, they are now property of Or-
acle.

4This is perhaps similar to the confusion that occurs when
researchers mention they have analyzed Apache. Do they
refer to Apache’s httpd server (the original Apache) or to
the entire VC repository of its eponymous Foundation?

should take such differences into consideration to get a more
accurate view on how each IDE is being created.

3.2 File Size

As we have already discussed, each VC system might not
be directly comparable because each contains different prod-
ucts. Nonetheless, we can investigate the distribution of file
sizes between both to evaluate if the file sizes vary signifi-
cantly between the two projects.

File Sizes in VC

+_,,
+_D

SLOCs
100
I

T
'
'
'
'
'
'

p— _

T T
Netbeans Eclipse

Figure 1: Distribution of file sizes in VC repos.

Figure 1 shows the distribution of the file sizes of both
products. As it can be seen, distributions follow what appear
to be a power-law distribution, consistent with research by
[2]. However, as software developers, we believe the median
number of SLOC per file is small (55 SLOC for Netbeans,
and 64 SLOC for Eclipse)®

Plotting the density distribution of the sizes (in SLOC)
shows that large files, even though few, contribute signifi-
cantly to size of the project. For instance, figure 2 shows
the density distribution of Netbeans code in its VC reposi-
tory. Its repository contains 6.7 MSLOC (median 55 SLOC,
average 125). However, the largest 5% of the files contribute
2.3 MSLOC (almost 1/3 of the source code), and files larger
than 279 SLOC contribute 50% of the code.

Eclipse shows similar results. As shown in figure 2, its
density curve is similar to Netbeans, although skewed to the
right. The total SLOC is 10M, with a median of 64 SLOC
and an average of 167. The largest 5% of its files contribute
4.2MSLOC, 42% of the code, 50% of the code in Eclipse’s
VC can be attributed to files that are larger than 444 SLOC.

As it can be seen from figure 1, in both cases, Netbeans
and Eclipse, 50% of the code in both systems comes from
files that could be considered outliers, according to their
size boxplots. This result is consistent with research that
has been found that few files have the most modifications
(see [3] for a summary of research in this area).

SCommon Java constructs and traditions such as POJO’s,
Beans, Exceptions, and Interfaces could be contributing to
a suprisingly small median file size.

Netbeans Eclipse

Density of SLOCs
Density of SLOCs

S qo oo oo
T T T T T T T

T T
1 10 100 300 1000 10000 1 10 100 1000 10000

Size of Files in SLOCs Size of Files in SLOCs

Figure 2: Density distribution of file sizes for Netbeans
and Eclipse

Observation No. 5. In software repositories min-
ing, data points that appear as outliers might have a
significant impact in any analysis and should not be
ignored.

3.3 Cloning or Branching

Any discussion that involves size of source code eventu-
ally includes the question: how much of the code has been
cloned? In previous work [4], we used clone detection to
measure the proportion of copied tokens in a source file that
are also present in other files. Files with a large proportion
of copied tokens might be file siblings (a copy of another
file) or files that tend to have generic code that needs to be
repeated over and over again. Since unit tests tend to be
quite similar to each other, we removed any file with a name
that included test in its name.

In Netbeans we discover that, out of 42,375 different files,
only 4,393 contain files with a proportion of copied tokens of
at least 75%, and 2,829 have 100% ratio. Of these 2,829, 109
were automatically generated, and many others have iden-
tical filenames (though in different subdirectories). 1,360
of them were identical byte-per-byte copies of each other.
These files account for .4MSLOCs), less than 7% of the
SLOC total. Eclipse, on the hand, shows significantly larger
copying. 10,558 files exhibit a copied ratio of 75% or more
(1/6 of the files), and 8,239 had a 100% ratio. These files
contributed 2.1 MSLOCSs, 21% of the total code based in the
VC repository.

To supplement this analysis we compare the fully quali-
fied name (FQN) of each Java file. Our assumption, as well
as that of Java’s built-in classloader, is that if two classes
share the same FQN, then they represent the same concept
within the software (though with potentially different logic).
If we divide the source code of Eclipse into three subsets: e4
(work in progress towards the next major release of eclipse),
incubator (speculative side projects under development that
may or may not succeed in eventually joining the main prod-
uct), and eclipse (everything else), we find there are 39,602
different FQNs in eclipse, 8,701 in incubator, and 8,851 in
e4. Figure 3 shows a proportional Venn diagram that rep-
resents the overlap between the FQNs of these sets. As it
can be seen, incubator and e/ appear to be responsible for
many duplications of code. This makes sense: both areas are
experimental, and sources inside each may one day replace
the current code in Eclipse.

This also highlights an important fact: the developers of
Eclipse decided to create a copy of part of Eclipse and place

it in another directory within the VC repository to continue
its development instead of creating a branch (using the fea-
tures of the VC system) for such purpose. It is likely that
this decision has advantages and disadvantages that need to
be further investigated.

Figure 3: Distinct FQNS among 3 directories of
Eclipse’s VCS.

Observation No. 6. Copying of files within a repos-
itory can be significant, and should be evaluated to
avoid bias.

4. CONCLUSION AND FURTHER WORK

We have demonstrated that a comparison between the
source code of two relatively equivalent systems requires
careful consideration. Many potential pitfalls exist, such as
identifying the proper code of such systems from their ver-
sion control systems, and the impact of cloning. Otherwise,
results might be biased.

We believe that research is needed in this area. The ob-
servations made in this paper should be evaluated in various
projects, to determine if they are generalizable beyond these
two projects.

S. REFERENCES

[1] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M.
German, and P. Devanbu, “The Promises and Perils of
Mining Git,” in Proceedings of the International
Working Conference in Mining Software Repositories,
2009, pp. 1-10.

[2] G. Concas, M. Marchesi, S. Pinna, and N. Serra,
“Power-laws in a large object-oriented software system,”
IEEE Transactions on Software Engineering, vol. 33,
pp. 687-708, 2007.

[3] H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey
and taxonomy of approaches for mining software
repositories in the context of software evolution,” J.
Softw. Maint. Fvol., vol. 19, pp. 77-131, March 2007.
[Online]. Available: http:
//portal.acm.org/citation.cfm?id=1345056.1345057

[4] D. M. Germén, M. Di Penta, Y.-G. Guéhéneuc, and
G. Antoniol, “Code siblings: Technical and legal
implications of copying code between applications,” in
MSR, M. W. Godfrey and J. Whitehead, Eds. IEE,
2009, pp. 81-90.

