
The Past, Present, and Future of Software Evolution

Michael W. Godfrey
Software Architecture Group (SWAG)

School of Computer Science
University of Waterloo, CANADA
email: migod@uwaterloo.ca

Daniel M. German
Software Engineering Group

Department of Computer Science
University of Victoria, CANADA

email: dmg@uvic.ca

Abstract

Change is an essential characteristic of software devel-
opment, as software systems must respond to evolving re-
quirements, platforms, and other environmental pressures.
In this paper, we discuss the concept of software evolu-
tion from several perspectives. We examine how it relates
to and differs from software maintenance. We discuss in-
sights about software evolution arising from Lehman’s laws
of software evolution and the staged lifecycle model of Ben-
nett and Rajlich. We compare software evolution to other
kinds of evolution, from science and social sciences, and we
examine the forces that shape change. Finally, we discuss
the changing nature of software in general as it relates to
evolution, and we propose open challenges and future di-
rections for software evolution research.

1. Introduction: The inevitability of change

As Lehman famously observed, software systems must

be able to evolve or they risk an early death [27]. Software

systems, like economic theories and Galápagos finches, are

embedded in an environment that is also continually chang-

ing [9, 17, 42]. For software, the environment has both tech-

nical and social characteristics: the deployed system oper-

ates within a technical run-time infrastructure, while at the

same time users form opinions of the system based on their

direct and indirect experiences with it.

As in economics and biology, it is the interactions of the

software system with its environment that determine its ul-

timate success: Does the system provide enough function-

ality to do its intended job? Is it easy to use? Is the data

secure? Can I use it on my cell phone? Is it open source?

Is the price reasonable? In turn, the lessons of these in-

teractions comprise feedback into the development of sub-

sequent versions of the system: Which new features were

enthusiastically adopted? What absent features are users

asking for? In what surprising ways was the product used?

How does our system compare to that of our competitors?

How easy would it be to port to MacOS? Are users still

angry about the spyware incident? As new features are de-

vised and deployed, as new runtime platforms are envis-

aged, as new constraints on quality attributes are requested,

so must software systems continually be adapted to their

changing environment.

This paper explores the notion of software evolution. We

start by comparing software evolution to the related idea

of software maintenance and briefly explore the history of

both terms. We discuss two well known research results of

software evolution: Lehman’s laws of software evolution

and the staged lifecycle model of Bennett and Rajlich. We

also relate software evolution to biological evolution, and

discuss their commonalities and differences. Finally, we

survey the evolving road ahead for research into software

evolution; in particular, we find that the very nature of a

software system has begun to change, and we discuss the

open questions and research challenges that lie ahead.

2. Evolution versus maintenance

Historically, both “software evolution” and “software

maintenance” date from the 1960s but neither term was

adopted into common use until years later.1 “Maintenance”

was first to achieve widespread acceptance, due in part to

Canning’s well known paper of 1972, “That Maintenance

Iceberg” [4], and also to Swanson’s typology of mainte-

nance activities introduced in 1976 [41]. We now discuss

both terms in more detail.

2.1. Software maintenance

It is Swanson who is responsible for the categories of

maintenance kinds — corrective, adaptive, and perfective

— that are still in common use today [41]. Swanson’s

original descriptions of the categories differ somewhat from

1Chapin et al. have provided a detailed discussion of this topic [7].

978-1-4244-2655-3/08/$25.00 © 2008 IEEE FoSM 2008129

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:28 from IEEE Xplore. Restrictions apply.

most modern formulations,2 but a reasonably faithful updat-

ing of the terms might be given as:

Corrective maintenance are changes that fix bugs in the

codebase.

Adaptive maintenance are changes that allow a system to

run within a new technical infrastructure.

Perfective maintenance are any other enhancements in-

tended to make the system better, such as adding new

features, boosting performance, or improving system

documentation.

According to this categorization, corrective and adaptive

maintenance tasks do not alter the (intended) outward se-

mantics of the system, while perfective maintenance in-

cludes a wide variety of possible changes to the system.

Some later taxonomies (e.g., [15]) add a fourth category:

Preventive maintenance are changes made to ease future

maintenance and evolution of the system, such as re-

organizing internal dependencies to improve cohesion

and coupling.

In this view, preventive maintenance tasks should leave the

external semantics of the system unchanged, as the main

goal is to improve the internal design of the system. In

practice, however, preventive maintenance activities often

lead to improved design ideas that, in turn, result in outward

changes.

This last category is somewhat controversial; some con-

sider the term to be ill-defined, and others note that it can

be seen as fitting within the domain of perfective mainte-

nance [6]. For example, the 1990 IEEE Standard on Soft-
ware Engineering Terminology defines preventive mainte-

nance as “maintenance performed for the purpose of pre-

venting problems before they occur”3 [15], while the sub-

sequent 1998 IEEE Standard on Software Maintenance Ter-
minology omits the term from the main body of definitions,

referring to it only in the appendix [16].

Swanson’s taxonomy is based on the intent of the devel-

oper toward the system rather than the nature of the changes

themselves; others have presented alternative taxonomies of

software change. Chapin et al. described an expanded clas-

sification scheme of 12 categories based on how artifacts

and activities were observed to have changed [7]. Mens

et al. proposed a taxonomy of software evolution based on

the characterizing mechanisms of change and the factors

that influence these mechanisms [33]. Their classification

scheme is organized into the several logical groupings: tem-

poral properties, objects of change, system properties, and

2Swanson also subsequently revised his own definitions [29, 28].
3One wonders if the IEEE considers clairvoyance to be a job require-

ment for software maintainers.

change support. Kitchenham et al. described an ontology

of software maintenance terms in the form of a UML model

[22]; their particular goal was to identify factors that might

affect the results of empirical studies on software mainte-

nance and evolution.

2.2. Software evolution

While the terms “evolution” and “maintenance” are often

used interchangeably with respect to software, there are im-

portant semantic differences between them. As Parnas and

others have pointed out, “maintenance” connotes the idea

of keeping an existing system running without changing the

design; thus, for physical systems, maintenance often en-

tails replacing worn out parts. However, software does not

wear out in the same sense; rather, the impetus for change

comes from dissatisfaction with the current system [27, 36].

Thus, the practice of software maintenance requires chang-

ing the design of the system: by fixing bugs so that the de-

sign is correct, by adapting the system for use in new en-

vironments, by adding new features, or by improving the

internal design so that the system is easier to manage and

change. It is innovation, not preservation, that drives soft-

ware change: a new system, better adapted to its environ-

ment, evolves from the old one.

2.2.1. Evolution as a perspective on change

Since software maintenance is by nature a design activ-

ity, it tends to be more intellectually demanding and thus

also riskier than the maintenance of physical systems. Con-

sequently, many have started to use the term “software evo-

lution” as an alternative to describe the various phenomena

associated with modifying existing software systems.

This term has several advantages: First, evolution sub-

sumes the idea of essential change that maintenance sim-

ply does not connote. Maintenance suggests preservation

and fixing, whereas evolution suggests new designs evolv-

ing from old ones.

Second, maintenance is usually considered to be a set of

planned activities; one performs maintenance on a system.

Evolution, on the other hand, concerns whatever happens

to a system over time; in addition to the planned activities,

unplanned phenomena often manifest themselves also. For

example, no one ever plans for interfaces to become bloated,

for architectural drift to set in, or for fundamentally new

uses of the system to emerge over time, but these are all

evolutionary phenomena.

Finally, it can be argued that maintenance and evolution

offer different perspectives on the nature of change. Re-

search on software maintenance can be seen as addressing

practical, engineering goals: What should we do next? How

risky is it? How should we validate our work? Research on

130

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:28 from IEEE Xplore. Restrictions apply.

software evolution, on the other hand, can be seen as asking

questions of a broader, more scientific nature: How fast can

a system grow before it becomes resistant to change? How

do internal module boundaries emerge over time? Does

open source development differ from industrial software de-

velopment in measurable ways?

While others may previously have used the term “soft-

ware evolution”, it is Lehman and his collaborators who

are usually credited with being the first to consider how the

study of software evolution differs fundamentally from that

of software maintenance [24]. We now briefly review some

of their research contributions.

2.2.2. Lehman’s Laws of Evolution

While the term had been used previously, Lehman and

his collaborators are generally credited with pioneering the

research field of software evolution. Building on empirical

studies of the evolution of IBM’s OS360 and other large-

scale industrial systems [24, 26], Lehman formulated a set

of observations that he called his Laws of Evolution. Ini-

tially, three laws were postulated, but five more were sub-

sequently added [27, 25]. The laws concern what Lehman

called E-type systems: monolithic systems produced by a

team within a company that solve a real world problem and

have human users.4 Lehman’s Laws may be summarized

as:

1. Continuing change — A system will become progres-

sively less satisfying to its users over time, unless it is

continually adapted to meet new needs.

2. Increasing complexity — A system will become pro-

gressively more complex, unless work is done to ex-

plicitly reduce the complexity.

3. Self-regulation — The process of software evolution is

self regulating with respect to the distributions of the

products and process artifacts that are produced.

4. Conservation of organizational stability — The aver-

age effective global activity rate on an evolving system

does not change over time; that is, the average amount

of work that goes into each release is about the same.

5. Conservation of familiarity — The amount of new

content in each successive release of a system tends

to stay constant or decrease over time.

6. Continuing growth — The amount of functionality in

a system will increase over time, in order to please its

users.

7. Declining quality — A system will be perceived as

losing quality over time, unless its design is carefully

maintained and adapted to new operational constraints.

4According to Lehman, E-type systems are embedded in the real world.

They are to be distinguished from, for example, software that serves purely

as infrastructure and implements a standardized interface. Such systems

may not endure the same kinds of evolutionary pressures as E-type sys-

tems.

8. Feedback system — Successfully evolving a software

system requires recognition that the development pro-

cess is a multi-loop, multi-agent, multi-level feedback

system; thus, for example, as a software system ages,

it tends to become increasingly difficult to change due

to the complexity of both the artifacts as well as the

processes involved in effecting change.

Laws 1, 2, 6, 7, and 8 have immediate appeal and of-

fer strong intuition into the nature of evolving software sys-

tems. Of these, Law 8 is the most subtle and complex, and

is perhaps deserving further elaboration and study; for ex-

ample, it also implicitly recognizes the role of user feed-

back in providing impetus for change. Laws 3, 4, and 5

propose hypotheses that are more easily testable by empiri-

cal study5, and perhaps warrant periodic re-examination and

re-evaluation as the nature of software and software devel-

opment also changes.

In recent years, research has started to emerge that chal-

lenges some of the laws and their assumptions. For ex-

ample, studies of open source systems such as the Linux

kernel found that they may be able to continue to grow at

a geometric rate even after many years of active develop-

ment; Linux, in particular, seems to violate laws 3, 4, and 5

[13, 38].6 These studies serve to highlight the changing na-

ture of software and software development: Lehman’s stud-

ies examined mostly proprietary, monolithic systems devel-

oped by identifiable teams of developers within an indus-

trial environment, whereas open source systems and their

development appear beholden to very different evolution-

ary pressures. Furthermore, we note that the very nature of

software system has begun to evolve; as the use of services,

components, frameworks, and powerful libraries becomes

increasingly commonplace, the notion of how systems are

designed and composed, what dependence means, and the

complexity of change and its management will demand that

many of our models will have to be re-examined and rebuilt.

2.2.3. Software evolution and process

One of the side effects of the confusion between the

terms “software maintenance” and “software evolution” has

been a lack of attention given to process models for con-

tinually evolving long-lived systems. The classic waterfall

model, for example, is usually depicted as treating main-

tenance as merely the final step in development [40, 32].

While this may model the logical progression of the stages

of initial development (first requirements, then design, test-

ing, deployment, and finally maintenance), it does not ac-

curately model the practice of development on a long-lived

5Lehman detailed his own studies of several large industrial systems to

support these claims [26, 27].
6In particular, these studies appear to violate the 1997 version of the

laws; Lehman and Ramil have since revised them to take these results into

account [25].

131

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:28 from IEEE Xplore. Restrictions apply.

system. More recent models consider software development

to be essentially iterative and incremental [3, 18, 30]. That

is, development is composed of a series of mini-cycles of

requirements, design and implementation, and testing; evo-

lution and maintenance do not exist as explicit stages per se,

rather the whole iterative and incremental lifecycle models

the evolution of the system.

Bennett and Rajlich have presented a descriptive model

of software evolution — called the Staged Model of mainte-

nance and evolution — that summarizes many of these ideas

[2]. Their model divides the lifespan of a typical system into

four stages:

1. Initial development — The first delivered version

is produced. Knowledge about the system is fresh

and constantly changing; in fact, change is the rule

rather than the exception. Eventually, an architecture

emerges and stabilizes, ideally with a view to likely

future development.

2. Active evolution — Simple changes are easily per-

formed, and more major changes are possible too, al-

though the cost and risk are now greater than in the

previous stage. Knowledge about the system is still

good, although many of the original developers will

have moved on. For many systems, most of its lifes-

pan is spent in this phase.

3. Servicing — The system is no longer a key asset for the

developers, who concentrate mainly on maintenance

tasks (“keep it running”) rather than architectural or

functional change. Knowledge about the system has

lessened and the effects of change have become harder

to predict; the costs and risks of change have increased

significantly.

4. Phase out — It has been decided to replace or elim-

inate the system entirely, either because the costs of

maintaining the old system have become prohibitive or

because there is a newer solution waiting in the wings.

An exit strategy is devised and implemented, often in-

volving techniques such as legacy wrapping and data

migration. Ultimately, the system is shut down.

We note that the Staged Model is primarily descriptive

rather than prescriptive; that is, it describes the typical activ-

ities that one would observe at the various stages of a soft-

ware system’s life but does not attempt to prescribe which

activities ought to be performed. Its primary contribution

is thus aimed at improving understanding of how long-lived

software evolves, rather than aiding in its management.

3. On the nature of evolution

Having examined the nature and history of software evo-

lution and its research, we now turn our attention to other

ideas of evolution. Within the realm of science, “evolution”

usually connotes the study of biology, as this is where the

modern use of the term has come to have strong meaning.

But what is evolution, exactly? Are there useful lessons that

the evolution of biological species can teach us about the

evolution of software systems? To answer these questions,

let us briefly review the basics of biological evolution.

3.1. Biological evolution in a nutshell

Darwin’s memorable phrase to describe biological evo-

lution was “descent with modification”, by which he meant

that — over many generations — new species with new

structural traits can and do come into existence from older

ones [19]. A more modern definition may be given as “in-

heritable change in a population of individuals over time”

(see e.g., [12]). This definition bears some careful discus-

sion. First, we note that biological evolution pertains only to

inheritable change, that is, modifications to genetic encod-

ing that can be passed on to offspring. Second, biological

evolution concerns change over time in the traits of groups
of individuals such as species and subspecies7; a population

is considered to have evolved if the set of relative frequen-

cies of inheritable traits has changed, or if new traits have

emerged.

At this point, it is useful to introduce two more terms that

we will revisit later [9]:

• The genotype of an individual is its specific genetic en-

coding; in the case of species that reproduce sexually,

the genotype of an individual is entirely determined

by that of its parents, each of whom contribute half of

their own genotype to the offspring.8

• The phenotype of an individual is the sum of all of its

observable characteristics; roughly speaking, the phe-

notype is determined by the genotype plus interactions

of the individual with its environment over time.

For example, a person’s eye colour (a phenotypic trait) is

due entirely to their genotype, while their height (also a

phenotypic trait) is due to a combination of genotype and

interactions with their environment as they were growing

up (e.g., malnutrition can stunt your growth). And a tattoo

is a phenotypic trait that has little, if any, genotypic origin

except insofar as your brain may be favourably disposed to

the idea that tattoos are desirable.

The important point to note here is that non-genotypic

change is not inheritable. Instead, the term “culture” is used

to denote phenotypic traits — such as ideas, traditions, and

fashions — that are passed on through the generations but

are not “in the genes” [9].

7The term “development” connotes change in an individual over time,

such as a human embryo growing into a child, and later into an adult [5].
8When mistakes are made in copying genetic information the genotype

of offspring may differ from both parents; this is called mutation.

132

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:28 from IEEE Xplore. Restrictions apply.

3.1.1. The mechanics of biological evolution

There are two key ideas to the working process of bio-

logical evolution:

1. Various mechanisms of change act to increase and de-

crease the relative frequencies of inheritable traits.

2. Evolution takes places within an environment, which

also changes over time.

The mechanisms of change include mutation, which intro-

duces new genotypic values, which in turn may introduce

new phenotypic traits; natural selection, in which individu-

als having genotypic values that provide phenotypic advan-

tage tend to reproduce more often than individuals that do

not; genetic drift, which occurs when some genotypic val-

ues come to dominate others by probabilistic chance alone;

and gene flow where individuals from one population may

provide new genotypic values to a neighbouring population,

resulting in new genotypic combinations [31].

The notion of evolution being embedded in an environ-

ment is also important. Since individuals change (and are

changed by) their environment what succeeds today may

not work a few generations from now; the environment may

be very different then [31].

3.2. The evolution of software

While biology has the best studied and most concrete

body of knowledge concerning evolution, it is a simple fact

that evolution is a pervasive phenomenon. While the on-

tologies, pressures, and mechanics may differ, there can be

no doubt that, at least in some sense, culture evolves as well.

Dawkins, in his landmark book on evolutionary biology The
Selfish Gene, coined the term “meme” to connote a unit of

culture that can evolve over time, analogous to a gene in

biology [9]. While the study of memes is somewhat con-

troversial — due mainly to subsequent scholarship that is

perceived as lacking rigour — it is also beyond the scope

of this paper. Instead, we shall now proceed to sketch out

how software evolution is similar to — and different from

— biological evolution.

3.2.1. Definitions

We will frame our model around the idea of a version of

a software system being an individual, with the totality of

all deployed versions of a given system comprising a pop-

ulation. The source code of a system version seems a good

fit for the label software genotype, as the phenotypic soft-

ware system that users interact with is entirely derived from

processing the source code though a compiler and related

tools. We can then examine the notion of a software pheno-
type: an executable program deployed within both a techni-

cal run-time infrastructure and a social user environment.

Now we come to our first important difference: In bi-

ology, non-genotypic change typically has no influence on

evolution.9 The cause and effect relationship between geno-

type and phenotype is remote and indirect; it is hard to feed

information back into the design process since the design

process — the creation of new genetic ideas — is imprecise

and due mostly to chance i.e., mutation.

Software, on the other hand, is designed by humans, di-

rectly and concretely. We can easily observe the effects of

our design efforts, both within a technical sense — How

fast is it now? Do the new features work properly? — and

a social sense — Do users like it any better than last time?

— and use this information as explicit input into the design

of the next version. That is software, unlike biology, is de-

pendent on intelligent design for change.

3.2.2. The pressures on software to evolve

In the software world, we can also observe external

mechanisms that encourage change resulting in new “indi-

viduals”: requests for new features, the existence of new

platforms, and the desire to improve quality attributes such

as performance. There are also forces that tend to limit

change: market saturation, political and legal concerns, and

the complexity of the software system itself. Finally, we re-

peat the observations that software systems are also embed-

ded within an environment; as Lehman noted in his eighth

law, that environment forms a complex feedback loop that

affects the system’s ability to further evolve.

4. The road ahead: Challenges + opportunities

Having surveyed the past of software evolution research,

let us now turn our attention to the state of the world, and

survey the challenges — and opportunities — that lie in

the road ahead.10 We see six main areas of interest, each

with its own set of challenges: model building and empir-

ical studies, open source development, evolutionary pres-

sure and emergent design, improving the collective memory

of software developers, the emergence of software “eco-

spheres”, and improved understanding of economic trade-

offs and risks.

4.1. Model building and empirical studies

Challenge: How do we proceed?
9To be careful, phenotypic change can influence the environment,

which can in turn influence which genotypic values are selected for suc-

cess. For example, in a human society that values tattoos, individuals who

are more favourable disposed towards getting a tattoo may have more re-

productive success than those who are not. Obviously, tattoos themselves

are not inherited by offspring, but any genes that encourage open minded-

ness with respect to tattoos may be.
10Mens and Demeyer have recently published a survey of current re-

search trends in software evolution [34].

133

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:28 from IEEE Xplore. Restrictions apply.

One of the major goals of software evolution research

is to devise models that can be used to describe the past,

present, and future evolution of a software system. Ideally,

we would like such models to address both qualitative and

quantitative properties of systems, and also to have some

predictive power both in the short and long term.

However, the creation of such models requires that sig-

nificant background work be done first. Building scientific

understanding for a domain typically follows a multi-step

process: a) observation of phenomena, b) building of mod-

els and hypotheses, c) testing of hypotheses, and then d) op-

timizing models and retesting. In the domain of software

evolution, the first stage has been (and continues to be) per-

formed through empirical studies, such as exploratory case

studies of single system versions, longitudinal studies of

single systems, and comparative studies of multiple systems

and multiple versions.

However, there are a variety of problems endemic to try-

ing to generalize from these kinds of studies. First, and most

vexing, is the fact that software systems — even from the

same domain — tend to be much more different than alike

in their details. For example, while it is likely that most re-

lational database systems have a similar broad architecture

(a client interface, a query engine, a storage manager, etc.),
it is unlikely that will be much commonality at the level of

source code. Systems from a similar application domain at

a similar point in time may respond to similar evolutionary

pressures, but the measurable impact of these pressures is

recorded on the unique codebases of the individual systems.

The second problem (which is discussed in more detail

in the next section) is of accessibility and generalizability.

While there are now a very large number of open source

systems that can be studied freely, the vast majority of com-

mercial software is still created as proprietary and closed

source. Developing sound models and hypotheses requires

the study of many different software systems, and the trade

secret nature of software makes this difficult. While organi-

zation do sometimes permit researchers to study their sys-

tems, such work is typically covered by a non-disclosure

agreement (NDA), which limits what information can be

made public. There does exist a significant body of work

of studies of such systems (see e.g., [11, 26]), but many of

the details are hidden and typically the software artifacts are

not easily available to others to perform follow-up studies.

A third problem (discussed in more detail in Section 4.5)

is that the very nature of what a system is — and how it

is designed, developed, and deployed — is evolving; con-

sequently, it is hard to know how to model (and therefore

measure) what a system is.11 Previously, it was enough to

study monolithic systems that depended only on standard

libraries, but today development artifacts comprise more

than just source code: XML customization files, web inter-

11Bennett and Rajlich have made a similar observation [2].

faces, user scripts, multimedia images, bug tracking logs,

version control logs, email messages, and user forums are

commonly tracked and stored in repositories. Web ser-

vices, components, frameworks, toolkits, and libraries make

it easier to build powerful applications by adding a rela-

tively small amount of code. And some systems, such as

Apache and GIMP, have a plug-in architecture where the

system provides a basic infrastructure, but is mostly un-

aware of the myriad of small utilities that users populate the

deployed system with. It is hard to know just what to mea-

sure and how. Even within a monolithic system, there are

basic framing questions that must be addressed. For exam-

ple, more than 60% of the source code in the Linux kernel

consists of drivers, which interact with the rest of the sys-

tem through a simple, well defined interface which in turn

effectively isolates the complexities of the system and the

drivers from each other [13].

Empirical study is the cornerstone of software evolution

research. To build our models and hypotheses we need to

analyze many different types of systems from different do-

mains produced using different processes, while at the same

time we must realize that each system will have its own

unique social history and set of design peculiarities that will

strongly influence any kind of systematic measurement.

Any interesting empirical study will be prone to objec-

tions: Why didn’t you study more systems? more versions?

more domains? more closed source systems? etc. It is un-

realistic, of course, to comprehensively study all possible

software systems to determine if a certain property always

holds; we should not expect to be able to do so. Instead,

the challenge of empirical study is to investigate both the

general — to see if well known properties hold — and the

particular — to seek to better understand unexpected phe-

nomena.

4.2. Open source vs. proprietary software

Challenge: Can we create general laws of software evolu-
tion from studying mainly open source systems?

As discussed above, studies of proprietary software have

usually been subjected to the restrictions such as NDAs that

limit the details that can be published. This poses two fun-

damental problems: first, many empirical studies cannot

easily be replicated or extended; and second, so much detail

is typically left out of the study that we are asked to take a

lot on faith. These studies ask us to trust that the researchers

have done the study properly, and also to accept the results

without fully understanding the design or even domain of

the target system.

Some open source systems have been around for more

than a decade, and have preserved their histories at the same

time. The availability of such open source systems initiated

a golden age of research in software evolution, where any

134

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:28 from IEEE Xplore. Restrictions apply.

researcher could suddenly have access to rich histories of

software systems to study. Furthermore, empirical studies

of open source systems can now be replicated to either con-

firm or revise previous results, or present discoveries that

might have been previously overlooked.

While the recent explosion in the amount of empirical

work on open source systems is good news to the research

field, the question must be asked: Is the evolution of open

source software a good indicator of the evolution of soft-

ware in general? If not, what are the differences?

We do know that the goals, processes, economics, and

even politics of open source software development are

strikingly different from that of most proprietary systems

[14, 23]; for these reasons, the study of open source soft-

ware evolution is a worthy topic on its own. What we must

ask is: How different are these goals, processes, etc., and

how do they affect the resulting systems? The preliminary

results are mixed: some studies have found significant dif-

ferences [13, 38], while others have not [35, 37].

Finally, we note that just as there are a wide variety of

industrial software development processes, there are also

many development models that fit under the umbrella of

“open source”: some projects are driven mainly by part-

time enthusiasts, and decisions are made by informal con-

sensus; some are initiated by companies but then donated

(i.e., abandoned) to the user community; and some are sup-

ported by organizations that spearhead and control official

development efforts. This last category — which includes

such well known systems as Mozilla, MySQL, Eclipse, and

Mono — is particularly interesting as the organization usu-

ally hires and manages most of the key developers and so

functions within a kind of hybrid process model: the system

is designed, developed, and managed by a formal organiza-

tion, but development is “out in the open”. Perhaps these

kinds of systems hold the key to an improved understand-

ing of the differences and similarities between open source

and proprietary software.

4.3. Environmental pressure and emergent design

Challenge: Can we anticipate how a system will respond
to environmental pressures?

Is it possible to accurately predict how a system will

evolve? To some degree, the answer is often yes. For ex-

ample, a system might be designed in such a way that some

classes of new features can be implemented in a repeatable

and well defined way e.g., frameworks, device drivers that

implement a standard interface, systems with a plug-in ar-

chitecture. In such cases, the organization has successfully

designed for change [36]; it is clearly planning the future

evolution of the system and had prepared its resources —

human and technical — to cope with it.

Sometimes future evolution is obvious even at a distance,

because the organization understand the technical and social

environment in which the system is embedded. For exam-

ple, operating system developers needs to track the techni-

cal space — e.g., the USB standard is upgraded from one

version to another, hence the operating system is expected

to implement support for the new version — as well as the

social one — e.g., USB webcams are dropping in price, and

users like them, pressuring the operating system to include

drivers for them.

How far ahead can an organization successfully plan the

evolution of its software system? The key is how is “suc-

cessfully” defined. It is always possible to plan ahead, and

without regard to the changing environment under which

the system runs, continue to evolve in a preplanned manner.

The likelihood of the software system evolving as planned

will depend on how resilient it is to external pressures that

lead in a different direction.

Perhaps one of the most decisive factors that affect

planned evolution is the economic conditions in which the

software systems exists. If it has a tight monopoly on its

market, such as in-house developed applications that are ex-

pected to satisfy the needs of the same organization’s users,

then it can probably get away with poorly adapting to the

evolving changes in its environment as long as it satisfies

certain fundamental needs of its users. Most of us have

used a software system that is antiquated, hardly satisfies

our needs, and could be improved, but it is the application

that our organization provides and we are forced to use it if

we want to do our work.

However, it is often the case that the software system

lives in a highly competitive market and the user will choose

a better one if his or her needs are not satisfied and if the

costs of migration are not high. The development team

needs to understand its current and future deployment en-

vironment, both technical and social, and try to plan ahead.

Sometimes “better” is a highly subjective adjective and has

nothing to do with the technical prowess of a system.

Evolution is opportunistic: an organization may decide

that its system can be extended to satisfy new user needs,

and in the process, to grow its market. However, oppor-

tunistic evolution is hard to plan; the challenge is to create

a system that can be adaptable to initially unforeseen cir-

cumstances without crippling it through over-engineering.

Extensibility has a cost.

Evolution is strongly influenced by negative properties

of the system, such as architectural drift, feature creep, and

progressive hardware dependence [36, 27]. These phenom-

ena are particularly pernicious, as they tend to go unno-

ticed at first but accrue over time leading to a deteriora-

tion in the system’s design and its ability to respond to de-

sired changes. And if they are detected after much time has

passed, they may be risky and expensive to fix.

135

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:28 from IEEE Xplore. Restrictions apply.

Thus, another challenge for software evolution re-

searchers is to develop techniques to detect such problems

as quickly (and unobtrusively) as possible. Software met-

rics have traditionally been suggested for this purpose; how-

ever, in practice developers often consider them uninforma-

tive and prone to misuse by managers. Evolution patterns

and anti-patterns seem more promising (see e.g., [10]); each

pattern describes a set of preconditions — technical, social,

economic — and the potential outcomes of its application.

It is then up to the development team to determine if and

when a pattern should be applied.

4.4. Creating a collective memory

Challenge: How can we unify a sea of disparate develop-
ment artifacts to improve our understanding of how
systems evolve?

Mining software repositories (MSR) is an emerging re-

search field that aims to synthesize knowledge about de-

velopment from a myriad of artifacts that may appear, at

first, to be only loosely related.12 For example, while ver-

sion control systems offer easy access to the source code

of a system, it is often hard to relate a change that imple-

ments a particular bug fix back to the original bug report.

While tools — or, more often, developer conventions —

do exist to aid in recording these kinds of relationships, of-

ten the information is simply not there. The field of MSR

aims to recover latent relationships between many kinds of

software artifacts: CVS check-ins, bug reports, test suites,

email messages, user forum postings, and various kinds of

documentation. This is done using a variety of techniques,

such as parsing, data mining, various kinds of analysis, and

the use of heuristics. MSR researchers can be likened to

software archaeologists who sift through remnants of the

past trying to piece together a coherent history of a software

project.

Developers are starting to realize the value of these his-

torical artifacts and are taking steps to preserve them. For

example, a version control system is a necessity for col-

laborative work, and many projects have begun to switch

from the CVS system to that of Subversion. The simplest

way to do this is to establish a new Subversion repository

with a current version of the system source code. However,

many projects have gone to the trouble of migrating the en-

tire version control history to the Subversion; clearly, they

see value in having easy access to history.

Developers are also now recognizing the value of corre-

lating information. For example, one can explicitly link a

commit that fixes a particular bug back to the original bug

report by adding the defect number in the log of the commit.

12Kagdi et al. have published a survey of recent research in this field

[20].

Such acts create traceability — it is possible to know why

a certain change was performed — and facilitate the auto-

matic recovery of relationships between these two different

types of information — it is possible to scan logs of com-

mits to find those that fix particular defects. Unfortunately,

this practice is not yet the norm.

One challenge for software evolution researchers is to

persuade developers about the value of cross-referencing in-

formation as it is created, when the knowledge is still fresh

in their minds. Developers need to be more aware of — and

proactive about — how they can help to create a collective

memory for their project with a minimum of effort. Such a

record can serve as a kind of public diary that can be later

perused by others who are interested in piecing together the

history and evolution of the system in question.

And this leads to another challenge: software systems

need documenters who are also historians of the system.

Their role includes documenting not only the system’s be-

haviour, but also the evolution of the system from a more

holistic point of view.

Of course, for the roles of developer-diarist and

documenter-historian to be filled there must be clear return

in value for the effort. And this becomes a chicken-and-

egg problem: researchers need to correlate information to

be effective, but developers are unlikely to invest heavily in

recording such relationships unless they are first proven to

be useful. The challenge for research community is to con-

vince developers that, if given better data, the results will be

worth the extra effort.13

4.5. The emergence of software ecospheres

Challenge: How can we better understand systems that are
deeply embedded in a rich ecology of interdependent
applications and services?

As mentioned in Section 4.1, component- and service-

oriented software development is resulting in the creation of

applications that rely on other systems — most of them un-

der the control of other organizations — for large chunks of

their functionality. The developers of such a system might

not know the exact versions of a component, service, li-

brary, or framework that will eventually be used by a spe-

cific instance of the system they develop. The software phe-

notype of these software systems has become complex and

varies significantly from one deployment to another, to the

point that it can no longer be controlled by the development

team.

Similarly, the evolution of such a software system is de-

pendent on the evolution of any other system it depends

13Arkley and Riddle have discussed the related problem of the

cost/benefit analysis of traceability with respect to requirements mod-

elling [1].

136

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:28 from IEEE Xplore. Restrictions apply.

upon [39]. If the component is no longer available, or is

determined to be of unacceptable quality, another will have

to be found to replace it and the system adapted to the new

part. Of course, one of the key goals of service-oriented

computing is to relieve developers from having to worry

about such compatibility issues; coupling from application

to service is, by design, loose. But this looseness also comes

with risks; anyone who has maintained a Linux system is

familiar with the problem of “update hell”, when the instal-

lation of new versions of libraries often breaks the installa-

tions of existing applications.

The challenge here for software evolution research is to

provide better models for these kinds of systems and their

dependent parts, and to model the evolution of this ecology

of applications rather than considering each as an isolated

and independent system.

4.6. Economic trade-offs and risk

Challenge: How can we incorporate understanding of eco-
nomics and risk into the theories of software evolu-
tion?

Sometimes we forget that as software engineers our ob-

jective is not to create a perfect software system but rather

the best system given a set of resources: How much money

can we spend? How skilled are the developers? What is

the competition like? How much time is available? What

is the projected lifespan of the system? How difficult is the

technical task? What existing assets can we make use of?

That is, we are often required to make decisions that balance

economics and technical risk.

Consider a more concrete example. Researchers some-

times debate how harmful source code cloning (i.e., cut-

and-paste coding) is to the design of software systems [21].

They may point out that there is a more elegant design than

cloning, that cloning leads to code bloat and inconsistent

maintenance, etc. yet developers continue to clone. Why?

It is because developers judge that they save resources by

doing so and that — rightly or wrongly — the trade-off jus-

tifies the decision to clone. In so doing, they are making an

economic decision that includes risk analysis. One might

also ask: Under which circumstances would they choose

not to clone? What factors drive their decision? Do they pri-

marily benefit the individual, the software project, or both?

Avoiding cloning usually involves refactoring, and we un-

derstand the advantages of refactoring. But refactoring is

not free; it requires time and effort, and refactoring also

risks introducing new defects that will have to be fixed [8].

We believe that there is a cultural gap here. Professional

developers are often very skilled at this kind of analysis, es-

pecially as it regards their own systems; they also often un-

derstand the value of a quick and dirty (and ultimately dis-

posable) prototype. Researchers, on the other hand, some-

times have a hard time understanding why developers would

not just design the cleanest, most elegant system from the

start and then zealously keep it that way.

A challenge for software evolution research is to be able

to model and quantify such questions: “Given the type of

system that I am building, its expected lifespan, and the

resources available now and in the long term, what is the

cost/benefit analysis for each of the potential decisions I

must take today?”

5. Conclusions
In this paper, we have argued that software evolution of-

fers a perspective that is distinct from the traditional views

of software maintenance: it connotes the idea of essential

change within an environment, it naturally encompasses the

concepts of both planned and unplanned phenomena, and

its study offers insights into questions of both science and

engineering.

Software evolution research is still a young field, and it

continues to change its focus and even its underlying con-

cepts. We know that software must evolve but we are still

learning how to model this evolution, particularly in the in-

creasingly complex environments in which software is de-

signed and deployed. There are many open questions to

be explored and several research challenges lie in the road

ahead, including: the problems of model building and em-

pirical study, the applicability of studying open source de-

velopment, the modelling of emergent design, improving

the collective memory of developers through better arti-

fact linkage, the emergence of software ecospheres, and the

study and modelling of economic trade-offs and risk.

Acknowledgements

We are grateful to Dan Berry, Dan Brown, Ahmed

Hassan, Ric Holt, Manny Lehman, Václav Rajlich, Juan

Fernandez-Ramil, Gregorio Robles, and Davor Svetinovic

for helpful comments and previous conversations.

References

[1] P. Arkley and S. Riddle. Overcoming the traceability bene-

fit problem. In Proc. of the 13th IEEE Intl. Conference on
Requirements Engineering, Paris, France, September 2005.

[2] K. Bennett and V. Rajlich. Software maintenance and evolu-

tion: A roadmap. In Proc. of the Conference on The Future
of Software Engineering, Limerick, Ireland, May 2000.

[3] B. W. Boehm. A spiral model of software development and

enhancement. IEEE Computer, 21(5), May 1988.
[4] R. Canning. That maintenance ‘iceberg’. EDP Analyzer,

10(10), 1972.
[5] S. B. Carroll. Endless Forms Most Beautiful: The New Sci-

ence of Evo Devo and the Making of the Animal Kingdom.

WW Norton & Company, 2005.
[6] N. Chapin. Do we know what preventive maintenance is?

In Proc. of 2000 IEEE Intl. Conference on Software Mainte-
nance, San Jose, CA, October 2000.

137

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:28 from IEEE Xplore. Restrictions apply.

[7] N. Chapin, J. Hale, K. Khan, J. Ramil, and W. Tan. Types

of software evolution and software maintenance. Journal of
Software Maintenance and Evolution: Research and Prac-
tice, 13(1), January/February 2001.

[8] J. R. Cordy. Comprehending reality: Practical barriers to

industrial adoption of software maintenance automation. In

Proc. of 11th IEEE Intl. Workshop on Program Comprehen-
sion, Portland, OR, May 2003.

[9] R. Dawkins. The Selfish Gene. Oxford Univ. Press, 1976.
[10] S. Demeyer, S. Ducasse, and O. Nierstrasz.

Object-Oriented Reengineering Patterns. Mor-

gan Kaufmann, 2003. Freely available at

http://www.iam.unibe.ch/˜scg/OORP/.
[11] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and

A. Mockus. Does code decay? Assessing the evidence from

change management data. IEEE Trans. on Software Engi-
neering, 27(1), January 2001.

[12] D. Futuyma. Evolutionary Biology. Sinauer Associates,

third edition, 1998.
[13] M. W. Godfrey and Q. Tu. Evolution in open source soft-

ware: A case study. In Proc. of 2000 IEEE Intl. Conference
on Software Maintenance, October 2000.

[14] G. Hertel, S. Niedner, and S. Hermann. Motivation of soft-

ware developers in open source projects: An Internet-based

survey of contributors to the Linux kernel. Research Policy,

32:1159–1177, 2003.
[15] The Institute of Electrical and Electronics Engineers. IEEE

Standard Glossary of Software Engineering Terminology,

1990. IEEE Standard 610.12-1990.
[16] The Institute of Electrical and Electronics Engineers. IEEE

Standard for Software Maintenance, 1998. IEEE Standard

1219-1998.
[17] J. Jacobs. The Nature of Economies. Modern Library, New

York, 2000.
[18] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Soft-

ware Development Process. Addison Wesley, 1999.
[19] S. Jones. Darwin’s Ghost: The Origin of the Species Up-

dated. Random House, 2000.
[20] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and

taxonomy of approaches for mining software repositories

in the context of software evolution. Journal of Software
Maintenance and Evolution: Research and Practice, 19(2),

March/April 2007.
[21] C. J. Kapser and M. W. Godfrey. ‘Cloning considered harm-

ful’ considered harmful: Patterns of cloning in software.

Empirical Software Engineering, 2008. To appear.
[22] B. A. Kitchenham, G. H. Travassos, A. von Mayrhauser,

F. Niessink, N. F. Schneidewind, J. Singer, S. Takada, R. Ve-

hvilainen, and H. Yang. Towards an ontology of software

maintenance. Journal of Software Maintenance and Evolu-
tion: Research and Practice, 11(6), December 1999.

[23] K. R. Lakhani and B. Wolf. Perspectives on Free and Open
Source Software, chapter Why Hackers Do What They Do:

Understanding Motivation and Effort in Free/Open Source

Software Projects, pages 3–21. MIT Press, 2005.
[24] M. M. Lehman and L. A. Belady, editors. Pro-

gram Evolution: Processes of Software Change.

Academic Press, 1985. Freely available at

ftp://ftp.umh.ac.be/pub/ftp infofs/1985
/ProgramEvolution.pdf.

[25] M. M. Lehman and J. Fernandez-Ramil. Software evolu-

tion and feedback: Theory and practice. In N. H. Madhavji,

J. Fernandez-Ramil, and D. E. Perry, editors, Software Evo-
lution. Wiley, 2006.

[26] M. M. Lehman, D. E. Perry, and J. F. Ramil. Implications

of evolution metrics on software maintenance. In Proc. of
the 1998 IEEE Intl. Conference on Software Maintenance,

Bethesda, Maryland, November 1998.
[27] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and

W. M. Turski. Metrics and laws of software evolution — The

nineties view. In Proc. of the Fourth Intl. Software Metrics
Symposium, Albuquerque, NM, November 1997.

[28] B. Lientz and E. Swanson. Software Maintenance Manage-
ment. Addison-Wesley, Reading, MA, 1980.

[29] B. Lientz, E. Swanson, and G. Tompkins. Characteristics of

application software maintenance. Communications of the
ACM, 21(6), June 1978.

[30] R. C. Martin. Agile Software Development: Principles, Pat-
terns, and Practices. Prentice Hall, 2002.

[31] E. Mayr. What Evolution Is. Basic Books, 2001.
[32] S. McConnell. Rapid Development: Taming Wild Software

Schedules. Microsoft Press, 1996.
[33] T. Mens, J. Buckley, M. Zenger, A. Rashid, and G. Kniesel.

Towards a taxonomy of software change. Journal of Soft-
ware Maintenance and Evolution: Research and Practice,

17(5), September 2005.
[34] T. Mens and S. Demeyer. Software Evolution. Springer-

Verlag, 2008.
[35] A. Mockus, R. T. Fielding, and J. Herbsleb. Two case

studies of open source software development: Apache and

Mozilla. ACM Trans. on Software Engineering and Method-
ology, 11(3):1–38, July 2002.

[36] D. L. Parnas. Software aging. In Proc. of the 16th Intl.
Conference on Software Engineering, Sorrento, Italy, May

1994.
[37] J. W. Paulson, G. Succi, and A. Eberlein. An empirical

study of open-source and closed-source software products.

IEEE Transactions on Software Engineering, 30(4):246–

256, April 2004.
[38] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and I. Her-

raiz. Evolution and growth in large libre software projects.

In Proc. of the Eighth Intl. Workshop on Principles of Soft-
ware Evolution, Lisbon, Portugal, September 2005.

[39] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr, J. J.

Amor, and D. M. German. Macro-level software evolution:

A case study of a large software compilation. Empirical
Software Engineering, 2009. To appear.

[40] W. W. Royce. Managing the development of large software

systems: Concepts and techniques. In Proc. of WESCON,

November 1970. Also appears in Proc. of 1987 Intl. Confer-
ence on Software Engineering.

[41] E. B. Swanson. The dimensions of maintenance. In Proc.
of the 2nd Intl. Conference on Software Engineering, San

Francisco, CA, October 1976.
[42] J. Weiner. The Beak of the Finch: A Story of Evolution in

Our Time. Vintage Books, New York, NY, 1995.

138

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:28 from IEEE Xplore. Restrictions apply.

