
A Model to Understand the Building and Running Inter-Dependencies of
Software

Daniel M German
University of Victoria

dmg@uvic.ca

Jesús M. González-Barahona Gregorio Robles
Universidad Rey Juan Carlos
jgb,grex@gsyc.escet.urjc.es

Abstract

The notion of functional or modular dependency is fun-
damental to understand the architecture and inner work-
ings of any software system. In this paper, we propose
to extend that notion to consider dependencies at a larger
scale, between software applications (usually programs or
libraries themselves). These dependencies, which we call
inter-dependencies are of exceptional importance in free an
open source software (FOSS), where it is common to build
new applications by taking advantage of a rich and com-
plex environment of programs and libraries whose function-
ality is available. To explore this concept, a methodology
and visualization for studying inter-dependencies of a com-
plex software system is presented and applied to one of the
largest distributions of FOSS: Debian GNU/Linux.

1. Introduction

The benefits of reusing pre-existing components when
building a new software system are well known[12]. The
idea of packaging a certain set of functionality into a
“library”, and later the concept of “software compo-
nent” (which led to the COTS—components-of-the-shelf—
paradigm) are good examples of this practice.

In the traditional software industry, most components
(specially COTS) are provided to third parties in binary
form only due to intellectual property constraints [4]. That
means that, for practical purposes, they become black
boxes, and little or no information about their internals is
available outside. Probably because of that, most research
on dependencies has concentrated on a) systems where all
the source code for the application is available, and can
therefore be analyzed; b) environments in which those de-
pendencies are clearly publicized (such as network ori-
ented services) and c) at the design and requirements level
[5, 1, 6, 10, 3, 16].

Free and Open Source Software (FOSS) provides a dif-
ferent paradigm: software is available in source code form,

and the potential user can download and build the software
(and in some cases customize it). Building many FOSS pro-
grams is not an easy task, since many build-time dependen-
cies (compilers, interpreters, libraries, or other modules that
are expected at compile-time) have to be met. And once the
ready-to-run version has been produced, executing it in an-
other host (even with a very similar system and configura-
tion) might be also problematic.

FOSS software has also become more complex, and the
number of applications in the FOSS ecology keeps grow-
ing (in approximately 10 years the number of application
in Debian, one of the most important distributions of FOSS
software has grown from 1,500, to more than 10,000 [13]).
FOSS developers commonly reuse other FOSS applications
(in a method similar to the one promoted by COTS) [8].

An application’s developers usually document what is
needed to compile and install it (a process that has been
simplified by systems such as autoconf and automake). It
is not uncommon for these developers, however, to miss (or
wrongly assume) some components. Only a real compila-
tion in a controlled environment can assess the exact collec-
tion of software needed for building the software (although
certain tools can help in this task). Run-time dependencies
are also tricky, since it is easy miss a dependency which is
only needed when certain path of execution is followed.

Downloading and compiling a complex application can
be a daunting task. It might require downloading, building
and installing many other applications beforehand. Finding
these dependencies, and having a clear view of them and
their impact, is not only important for running and build-
ing the application. Security and reliability implications are
also important [4], since running any application implies
potentially running any part of the full tree of dependen-
cies it needs. Detection of common dependencies is also an
interesting field, since some obscure, little known modules
could be a dependency for many end-user applications, po-
tentially becoming critical for their functionality or perfor-
mance. FOSS is also a very specialized ecology of applica-
tions, and reuse is encouraged. We have observed situations
in which an application has been split into two or more, be-

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:32 from IEEE Xplore. Restrictions apply.

cause it is determined that some of its functionality might
be useful to other projects [7]. Bringing a FOSS application
into an organization means bringing a potentially large set
of other applications along (required to build and run it). It
is therefore important to understand what applications are
required by another one.

As we argued in [8], understanding dependencies among
applications is important for research. Most research has
focused on a small number of end-user applications, such
as Apache, Mozilla, Eclipse, and PostgreSQL, and rarely
on libraries and other support applications. These applica-
tions require many other applications (libraries, and support
programs) to exists, which could be argued should also be
considered successful. Understanding the dependencies of
successful FOSS can bring attention to other projects worth
studying that lack direct end-users (such as libraries) and
are therefore invisible to most users.

The notion of dependencies between applications is not
only applicable to FOSS. It might also be exploited and used
in large organizations that have many different teams creat-
ing relatively independent applications that are expected to
work in concert.

The goal of this paper is to create a framework to model,
extract, study and visualize the dependencies among appli-
cations. In section 2 we formalize the requirements that one
software application has for other applications—its inter-
dependencies—and describe their characteristics. In sec-
tion 3 we define inter-dependency graphs as a method to
formalize inter-dependencies. In section 4 we describe two
methods to build these, and exemplify them by showing the
inter-dependencies of Bugzilla. We end with conclusions
and future work.

2. Dependencies between software applications

Most software applications verify (during their installa-
tion) for the proper environment where they are to be ex-
ecuted. They will verify that all the needed components,
libraries and support programs are installed. The installa-
tion system might install any dependency, or ask the user to
do it. Fewer verify—on a regular basis—that there exists
a proper environment for them to continue to function (and
will cease to work, or in a worst-case-scenario, perform an
unwanted operation). Its software developer follows a sim-
ilar process to create the necessary environment to build the
application and it might include installing compilers, a con-
figuration management systems, SDKs, etc.

Open source software applications, as its name implies
are distributed in source code form. They can be down-
loaded and built, then installed. In general an open source
application is built in the computer where it is going to be
installed; this simplifies tracking and installing dependen-
cies (many installation scripts of open source applications

do not verify that dependencies are installed, since this is
usually done at built time). In [11] Karels enumerates these
as integration issues typical of creating a system based on
open source software:

• Selecting and downloading an appropriate version of
the software (and all its inter-dependencies).

• Compiling/building the software (including creating
the necessary environment to compile the system–e.g.
installing the necessary compiler).

• Installing, configuring, and testing the software where
it is expected to run.

Usually the inter-dependencies of an application are de-
scribed in their configuration management systems, using
autoconf, cmake, ant, or make. A FOSS package will usu-
ally include a configuration file for one of these systems.
This configuration file will try to make sure the building
environment is sufficient to create the executables from the
source code. Once the binary is created, it is assumed that it
will run in the same system where it has been compiled, and
(in general) the application no longer checks if the running
environment is sufficient to execute the application.

This process should be performed (in advance) for each
of the dependencies of the application (which themselves
have other dependencies). For example, in order to be in-
stalled and function, Bugzilla requires Perl and a Web server
(such as Apache) to be installed before it. Apache requires
XPat (an XML parsing library for C), which in turns re-
quires a C run-time library. In order to build and install
a complex application it might be necessary to download,
build, install and configure dozens of different applications.

A FOSS application (typically made available in source
code form in a zip or tar file) might result in different “pack-
ages” that can be installed independently of each other. For
example, a library (such as libjpeg1, which implements I/O
to JPEG files) can be divided into header files (needed to
compile applications that use the library) and a dynamic li-
brary (needed to run applications that use the library). Any-
body wanting to build an application that uses the library
needs both, but once it is compiled only the latter is needed.

For this reason we will use the following terminology: an
application is a bundle of artifacts that include the source
code and other ancillary files needed to build and run such
application. An application can be divided one or more
packages, each capable of being installed (and potentially
built) independently of the rest.2

1http://www.ijg.org/
2Our notation is influenced by the Package Management Systems of

GNU/Linux distributions, which use a similar definition for a package.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:32 from IEEE Xplore. Restrictions apply.

2.1 Inter-dependencies

We formally define the inter-dependencies of a package
as the set of packages that are required to build and execute
the package, but are not distributed with the original appli-
cation. Inter-dependencies (which from this point we will
refer simply as dependencies) can be classified according to
the following criteria (which is summarized in table 1).

1. Type There are two types of dependencies: explicit,
which state the name of the package that will satisfy it
(and potentially the version) and abstract which describe
a “class” of packages that satisfy the dependency. In the
case of an abstract dependency, it should be satisfied by
exactly one of several packages (all of them are expected
to provide the same functionality to the packages that re-
quires it, even if their actual implementation and features
varies significantly). For example, a system might require
a “relational database” (the abstract dependency) that could
be satisfied by any of the RMDBS systems in the market.
There exist some de-facto abstract classes of packages (such
as “ANSI C compilers”, or “relational database manage-
ment systems”); in other cases the application might explic-
itly state the abstract dependency by listing all the potential
packages that would satisfy it.

2. Importance. dependencies can be required or op-
tional. Some features of the package might only be avail-
able if a given optional dependency is satisfied, but if it is
not, the package will still function (without the extra fea-
tures). Required dependencies should always be satisfied.

3. Stage at which it is necessary. Some dependencies
are needed only during build-time (such as a compiler, the
configuration management system, or static libraries to be
embedded into the executable); others to test it; while others
are needed during the installation of the package (tools to
modify the configuration files in the target system); finally,
during run-time (such as dynamic libraries installed in the
target system).

4. Usage method. Method by which the dependency is
used. They can be roughly divided in stand-alone programs
(e.g. a database management system, a compiler neces-
sary to build the binaries), middleware-based (those that use
systems such as CORBA, COM, httpd for intercommunica-
tion), plug-ins (those that require a core application with a
plug-in architecture, such as the Apache web server, Photo-
shop), and linkable libraries. This is an important issue in
FOSS engineering, where licensing might impose restric-
tions in the way a dependency is used.

Similar to the concept of a dependency, there exist anti-
dependencies: the package cannot function if its anti-
dependency is also installed (for example, the Linux kernel
cannot coexist with the BSD kernel, and vicersa—one is an
anti-dependency of the other).

Classification Examples
Type Explicit

Abstract
Importance Required

Optional
Stage Build

Installation
Run-Time
Testing

Usage method Stand-alone
Middleware-based
Plug-in
Linkable library

Table 1. Classifications of dependencies

Packages have properties that are relevant when another
application uses it as a dependency, such as those summa-
rized in table 2.

1. Version. In some cases an application might require
an exact version, in others a given version or its successors.

2. Source. What software application is the package be-
ing created from?

3. License. Licensing is an important issue in both com-
mercial and FOSS software: to be able to use a package (to
satisfy a dependency) one needs to acquire a license that
permits such use (some use the term “license compatibil-
ity”: the license of the dependency D is compatible with
the license of the package P if the license of D allows P to
use D via the expected usage-method [15]). For example,
assume we are developing a package P to distribute to oth-
ers; if we use a library L released under the General Public
License (GPL) via linking (to satisfy a dependency) then P
should also be released under the GPL. However, if P is
never to be distributed to others then we will be allowed to
use L.3 Legal issues can make it difficult to determine if
one can use a particular package to satisfy a dependency.

4. Cost. The cost might be monetary (such as the price
of a license); footprint (how much memory and/or disk
space uses when it is installed) or more abstract, such as
how difficult/easy it is to build and install.

5. Its own dependencies. What packages does it re-
quire.

3. Inter-Dependency Graphs

Dependencies can be modeled as a directed graph, where
nodes are explicit packages that are connected towards their

3The GPL is a copyright license. It only limits the ability of the user to
make copies of the GPLed software, but does not limit how the software is
used. See [15] for good discussion of the GPL, other FOSS licenses, and
their compatibility.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:32 from IEEE Xplore. Restrictions apply.

Property Examples
Version 1.2.3b
Source Product to buy/download.
License BSD, GPL, by seat, royalty free, etc
Cost Memory, price, disk, difficulty.
Dependencies What other pkgs does it need itself.

Table 2. Properties of packages relevant for
their use to satisfy dependencies.

dependencies. The edges are typed according to their im-
portance: optional and required. Abstract packages are also
nodes, and they are connected to any of the packages that
can “satisfy” it. A node can be further annotated with other
attributes of the package. Similarly the edges can be anno-
tated with extra information such as the cost of including
the relationship. Inter-dependency graphs are not acyclic
(sometimes two or more tightly related packages need to
be installed simultaneously). We refer to this graph as the
Inter-Dependency Graph (IDG) of a package.

We now proceed to define some terminology: the set of
all potential dependencies of P—denoted as D(P)—is the
set of all packages that might be required by P—the set of
all explicit packages in IDG(P). The set of required de-
pendencies of P is the set of packages that will always be
required by P—any explicit package that can be reached
from P by following edges marked as explicit. The direct
dependencies of a package P , denoted as D1(P) is defined
as the list of possible dependencies that P states it will or
it can use (the dependency is directly connected to P). For
explicit dependencies this includes each of them (both re-
quired and optional), and for abstract ones it includes any
explicit package can satisfy it.

In order to visualize an IDG of a package P we use the
following notation, which is exemplified in figure 1:

• P is depicted as a circle.
• Explicit packages are depicted as rectangles.
• Abstract dependencies are depicted as diamonds.
• The edge that connects a package to a dependencies

uses a continuous line if that dependency is required.
It uses a dashed-line if it is optional.

When a package has a large number of dependencies,
the graph becomes large and the number of edges explodes,
making it very difficult to draw in an understandable man-
ner. For this reason we propose two different ways to visual-
ize an IDG: 1) its direct IDG—DIDG; and 2) its simplified
IDG—SIDG.

The DIDG of a package P is computed by pruning its
IDG bread-first, which starts from P ; the traversing of the
graph does not continue at explicit packages, but contin-

P

A

B

O

Abs

G

D

E

F

H

Figure 1. IDG of an application P . P has re-
quired explicit dependencies A and B, op-
tional O (dashed lines), and abstract Abs. Abs
can be satisfied by one of D, E, or F .

ues at abstract packages. The edges that link P to each of
these other nodes are also part of the DIDG. The DIDG of
P shows the dependencies that the developers of P explic-
itly know are required by P , and hides the dependencies of
the dependencies. See figure 2 for an example of the DIDG
of the same package P depicted in figure 1. The explicit
packages in the DIDG(P) are equal to D1(P).

P

A

B

O

Abs

D

E

F

Figure 2. DIDG of an application P (see fig-
ure 1). It shows those dependencies that are
directly needed by P .

The SIDG of a package P is a minimum spanning tree of
the IDG of P , such that, starting from P , traverses the graph
breath-first. The SIDG’s most important feature is that it
depicts all the potential packages needed by P , connected to
the closest package that lists it as a dependency. The SIDG
of our example package is depicted in figure 3. Given that
there is no order in the children of a node, several SIDGs
can be computed for a given IDG.

There is a variant of the SIDG that is worth mentioning.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:32 from IEEE Xplore. Restrictions apply.

P

A

B

O

Abs

G

D

E

F

H

Figure 3. SIDG of P . The number of edges is
reduced, but all potential dependencies are
depicted, connected to the closest package
to P .

In this case the minimum spanning tree is computed by first
following required dependencies of explicit packages, fol-
lowed by abstract dependencies, and finally, optional ones
(we call this explicit-first SIDG) graph that can be used to
determine which optional dependencies are to be required
anyway (because they are required by another required de-
pendency). For our example package P , its explicit-first
SIDG is depicted in figure 4: note how O is to be required
by G; this could impact the decision to include O as an op-
tion of P and in using D to satisfy Abs. It is, however,
important to reiterate that SIDGs are simplifications of the
IDG and do not show all the relationships between pack-
ages. This also highlights an important advantage of IDGs:
their analysis can be helpful not only for reverse engineer-
ing, but for forward engineering.

P

A

B

Abs

G O

D

E

F

H

Figure 4. Explicit-first SIDG of P . Compare
this graph to its SIDG (figure 2). Here O is
shown as a required dependency of G while
in its SIDG it is shown as an optional depen-
dency of P .

3.1. Instance of an IDG

As we described earlier, depending on its abstract and
optional inter-dependencies, a package can be built and in-
stalled in potentially different ways. The person building
and/or installing the package decides which optional depen-
dencies to include, and what explicit package to use to sat-
isfy an abstract dependency. The instance of an IDG models
such decisions.

Formally an instance of the IDG a package P—is de-
fined any of the subsets of the IDG(P) such that: 1) zero
or more edges linking a package to its optional inter-
dependency are removed (those optional inter-dependencies
are not used); 2) for each abstract package, select one and
only one edge starting from it, and remove all others (the ab-
stract inter-dependency is resolved); and 3) after all edges
have been removed, remove any node and edge non reach-
able from P (such packages are no longer needed).

The number of potential instances of the IDG depends on
the number of optional and abstract inter-dependencies that
exist in the IDG. From a practical point of view an instance
of an IDG represents either the way a package is currently
installed on a system, or a particular way to build it and/or
install it based upon some criteria (for example, the “recom-
mended” or the “default” ways to build/install the package).

P

A

B

O

Abs

G

D

Figure 5. Instance of the IDG of P . The op-
tional O is used by P and the abstract inter-
dependency Abs has been resolved using D.

3.2. Annotating the IDG

The nodes of the IDG can be annotated according to
the properties of the packages (such as version required, li-
cense, cost, etc. –as described in table 2). An instance of
the graph can be build based upon a criteria that takes into
account these annotations. For example, instances can be
calculated that have certain properties, such as: the smallest
accumulated disk space (the sum of the disk space of each
of its packages), the one that does not use GPLed software
(if it exists), etc.

Similarly, the edges can also be annotated based upon
some of the classifications of inter-dependencies (described

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:32 from IEEE Xplore. Restrictions apply.

in table 1). For example, an instance can be created
that uses only edges labeled Build (representing the inter-
dependencies needed to build the package, but not to run
it), or that do not use CORBA (if such exists).

Being able to compute such instances could be very use-
ful to people trying to re-engineer a system to make it run
in an embedded system, where issues of footprint, and po-
tentially licensing are important.

An enhancement to the way an IDG (or its instance) is
visualized is to use the “source” annotation of the packages
(as we previously described a given software application
can result is one or more installable packages) create sub-
graphs for each source, such that they “cluster” their pro-
vided packages. This is exemplified in figure 6.

Src 1

Src 2

Src 3Src 4

Src 5

P

A

OB

Abs

H

D

G

F

E

Figure 6. An IDG where an annotation of the
nodes (“source”) is used to show the soft-
ware application where packages originate.

3.3. IDGs of a set of packages

There are occasions in which it is important to analyze a
system composed of more than one package. For example,
given the list of packages installed in a computer one would
be interested to know their interrelationships. The IDG of a
set of packages can be easily extended as the union of the
IDGs of each package. The resulting IDG might contain
more than one node without any incoming edges.

4. Building dependency Graphs

The most straightforward way to create the IDG of any
package P is to build its IDG recursively, starting from P :

To compute the IDG of P:
begin

result <- DIDG(P)
Foreach package k in DIDG(P) do

result <- result union DIDG(k)
endfor
IDG(P) <- result

end

The DIDG of a package can be created by inspecting
the source application of the package. In some cases its
developer (whether an organization or an individual) will
enumerate its requirements (such as in a README, or IN-
STALL file). In other cases it is necessary to inspect its
configuration management system files (such as those for
autoconf/automake, cmake, ant, etc). Sometimes a depen-
dency is difficult to discover because it is usually present in
the environment where the package is usually built or run
and it is not made explicit anywhere (particularly those that
require support programs that are executed via pipes).

For example, the source code of Bugzilla (version 3.0)
contains two installable packages: its documentation, and
its actual software. It states in its file QUICKSTART that it
requires: perl, MySQL or Postgresql, a mail transport agent
“compatible with sendmail”, and a web server that supports
CGI (it recommends apache 1.3.x, or apache 2.x). It also
includes a perl script ./checksetup.pl that should be run too
verify if “everything required is installed” (Bugzilla is pri-
marily implemented in perl). This script (created specifi-
cally for Bugzilla) includes a list of optional and required
dependencies (perl modules). Bugzilla requires three ab-
stract packages (DBMS, MTA, and web server), 8 required,
and 20 optional packages; figure 7 shows its DIDG.

Building the entire IDG of Bugzilla will require inspect-
ing a very large number of individual packages. In general
building the DIDG of a package is a time consuming task,
and depending on the complexity of the software, a poten-
tial large number of DIDGs might need to be created.

4.1. Building DIDGs from FOSS distribu-
tions

Linux software distributions recognized this as a ma-
jor challenge for the deployment and maintenance of Linux
based-systems [8]. The solution was the creation of Pack-
age Management Systems (PMS) that automatize the task
of downloading, building, installing, configuring, and unin-
stalling software applications with little or no intervention
by the user [2]. Several PMSs for FOSS systems are cur-
rently in use, such as Debian’s dpkg4, Red Hat’s rpm5, Yel-
lowdog’s yum6, and Fink’s fink7.

4Debian is one of the most successful GNU/Linux distributions
(debian.org).

5Red Hat distributes “Red Hat Enterprise”, one of the most success-
ful commercial distributions of GNU/Linux, and Fedora Core, a non-
commercial one (redhat.com).

6Yellowdog is a GNU/Linux distribution for the PowerPC architecture
(yellowdog.com). Yum is also used by Fedora Core.

7Fink is a FOSS distribution for OS X (fink.sourceforge.net).

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:32 from IEEE Xplore. Restrictions apply.

Figure 7. DIDG of Bugzilla, built by inspecting
its documentation and configuration files.

The PMS requires to know (at the very least) for each
package: a) the location where the software is to be down-
loaded (its source); b) a list of other applications that it re-
quires before it can be built (its build dependencies), and
before it can be installed (its run-timex dependencies), and
the steps required to build it, install it, and un-install it. We
will refer to this information as the package description.

The creation of the package description is the respon-
sibility of the package maintainer. She is also responsible
for determining the default configuration for the package,
which might involve determining which optional features
are to be used (or not). Her job is also to determine the
build and install dependencies of the package. Some FOSS
distributions use volunteers for this job (such as Debian and
Fink) and others pay employees to become package man-
agers (Red Hat).

4.2. Building IDGs of FOSS packages from
Debian

Debian [14, 13] defines two different types of packages:
source and binary. A source package corresponds to a
down-loadable application from which one or more binary
packages can be created8. The descriptions of each binary
and source package can be found in the files Packages.bz2
and Sources.bz2 respectively. Figures 8 and 9 show ex-
cerpts from Bugzilla’s binary and source package descrip-
tions. The fields are described in the Debian Package Man-
agement chapter of the Debian Reference9.

Package: bugzilla
Priority: optional
Section: web
Installed-Size: 4420
[...]
Architecture: all
Version: 2.22.1-2
Depends: debconf (>= 0.9.95) | debconf-2.0,

libtemplate-perl (>=2.10), libappconfig-perl,
libdbd-mysql-perl, libtimedate-perl,
libmailtools-perl (>= 1.67), libmime-perl,
apache | apache2 | apache-perl | apache-ssl | httpd,
sendmail | postfix | exim4 | mail-transport-agent,
ucf (>= 0.08), patch, dbconfig-common (>= 1.8.27),
mysql-client

Recommends: libchart-perl (>= 0.99c.pre3-0.1),
libxml-parser-perl, mysql-server, perlmagick

Suggests: bugzilla-doc, libnet-ldap-perl,
libgd-text-perl, libgd-graph-perl,
libgd-gd2-perl | libgd-noxpm-perl, python, ruby

[...]
Size: 821862
[...]

Figure 8. Excerpt of Bugzilla binary package
description in Debian 4.0

Building IDGs of all binary packages from Debian pack-
age descriptions is not trivial. It requires processing its list
of binary packages (Packages) and its list of source appli-
cations Sources. Processing Packages and Sources requires
two passes. In the first we create the set of all packages
(explicit and abstract).

8The term “binary” can be misleading, as it might not contain any bi-
naries; for example, a binary package can be composed of only documen-
tation.

9http://www.debian.org/doc/manuals/reference/ch-package.en.html

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:32 from IEEE Xplore. Restrictions apply.

Package: bugzilla
Binary: bugzilla, bugzilla-doc
Version: 2.22.1-2
Priority: optional
Section: web
[...]
Build-Depends: po-debconf, debhelper (>= 5), dpatch
Build-Depends-Indep: debconf (>= 0.9.95) | debconf-2.0
Architecture: all
[...]
Files:
c5b0baf3[...]cd1df 1938535 bugzilla_2.22.1.orig.tar.gz

[...]

Figure 9. Excerpt of the source package de-
scription for Bugzilla in Debian 4.0

• Every binary package becomes an explicit package
(from the Packages).

• Any name listed in a Provides field of package P be-
comes an abstract dependency (the case in which the
“provided” name is the same as an explicit package is
disambiguated). An edge is created from the abstract
dependency to P (P satisfies the abstract dependency).

• Every time a set of options (two or more packages us-
ing | between them such as “packageA|packageB”) ap-
pears in a dependency field (such as Depends, Pre-
Depends, Build-Requires, Recommends, Suggests):
create an abstract dependency (giving it a unique
name), and replace such set of packages with it.

In the second pass, for every binary package description
(the current package):

• For every package D listed in a Depends and Pre-
depends field: make D a (run-time) dependency of the
current package.

• For every package O listed in a Recommends and Sug-
gests field: make O an optional (run-time) dependency
of the current package.

Finally, scan Sources: for every source package descrip-
tion (the current package):

• For each package B listed in the Binary field:
– Set the source of B as the current package.
– For every package D listed in the Build-Depends

and Build-Depends-Indep fields: make D a
(build-time) required dependency of B.

Processing Debian 4.0 results in 18,042 explicit pack-
ages, 2,789 abstract packages are created (including the
1982 from Provides), and there are 10,223 source packages
(which provide from 1 to 316 packages each). To gener-
ate the IDG of any given binary package P extract from the
Debian graph the subgraph that is reachable from P .

The IDG of a package might not be identical from the

IDG that could be extracted from the original software ap-
plication. There are several reasons for this:

• Debian requires certain tools to perform the installa-
tion and setup of packages (such as debconf). These
packages are not required if the user performs the in-
stallation from the original source code.

• The package maintainer might decide that an optional
dependency is used by most of the users of the distri-
bution, hence changes such dependency to required.

• Some optional dependencies might not be listed at all.
• Some software applications are broken into packages

without the original software applications developers
being aware of it. In other words: the package main-
tainer decides what packages are created from a given
software application.

• Sometimes the source code of the application is modi-
fied (patched–in Debian terms). This might have reper-
cussions in its IDG.

• Many packages list their requirements but do not clas-
sify them in build-time or run-time. The IDGs built
from distributions usually do.

• Some intellectual property issues have affected the
name of the packages in Debian (for example
“Iceweasel” is the name given to the package that cor-
responds to a patched version of Firefox due to issues
regarding trademark and copyright10).

4.2.1 Debian Popularity Contest

The Debian Popularity Contest is an attempt to map the
usage of Debian packages. Its main goal is to know what
software packages are actually installed and used. This in-
formation is used in order to determine the order in which
packages are put on different CDs (i.e. packages with a high
popularity and use are put on the first or first few CDs); it is
also used during quality assurance activities as a criteria on
which packages to focus.

We use the popularity contest data of Debian to estimate
the most likely way an abstract dependency is resolved. We
make the following assumption: if an abstract dependency
has n-options, the one with the highest popularity is the
most likely instantiation of such abstract dependency. The
instance of the IDG computed using this method results in
the most popular instance of an IDG of a package (no op-
tional packages are included in it).

As a comparison, we present the graphs corresponding to
Bugzilla according to Debian 4. Figure 10 shows its DIDG,
figure 11 shows its SIDG (due to space limitations is shown
in a very small size ad it only contains required dependen-
cies). Its entire IDG has too many edges to be properly
presented in a meaningful way. Figure 11 shows the SIDG

10See For more information visit http://www.linux-watch.
com/news/NS3364701970.html.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:32 from IEEE Xplore. Restrictions apply.

of its most popular instance. In these graphs orange nodes
correspond to those that are always present in a Debian sys-
tem. Two interesting differences between the DIDGs of
Bugzilla presented in figures 7 and 10 are that the abstract
dependencies “web server” and “mail transport agent” have
many more packages that can satisfy them. “Web server”
can be satisfied by 22 different packages, such as cherokee,
boa, yaws, mini-httpd, etc); also, the Debian package main-
tainer converts the dependency “MySQL or Postgresql” into
MySQL-client, while Postgresql is not an option.

5. Conclusions and Future Work

In this paper we have described a method to model
the inter-dependencies that are required to build, run,
test, and install a given application: its inter-dependency
graph (IDG). We also present a method to visualize rep-
resent them. We exemplify them by presenting the inter-
dependencies of Bugzilla. We also present two methods to
build the IDG of an application: one that inspects its source
artifacts; and one that use a FOSS distribution (Debian).

The IDGs of a package can be used to determine vari-
ants in which the package can be installed. Their analysis
can be useful (including model checking methods such as
those used to model and verify components): it can show
inconsistencies (such the invalid use of a packaged based
upon its license), or to determine its minimum configura-
tion (in one is interested to run inside an embedded sys-
tem). From a re-engineering point of view it might facili-
tate the understanding of the different packages present on
a system, and how they are used. When one is interested in
the re-engineering of a given package the IDGs of a system
can be useful to determine what packages use another one.
IDGs can also be used to evaluate and audit a system. They
also provide a way to identify products that compete for
the same market (those that satisfy the same abstract depen-
dency). IDGs of a distribution (and packages) can provide
interesting insights into the open source ecology, where ap-
plications rarely work in isolation.

References

[1] R. Allen and D. Garlan. A formal basis for architectural
connection. ACM Trans. Softw. Eng. Methodol., 6(3):213–
249, 1997.

[2] D. Blackman. Debian package management, part 1: A user’s
guide. Linux J., 2000(80es):12, 2000.

[3] S. Dehousse, S. Faulkner, H. Mouratidis, P. Giorgini, and
M. Kolp. Reasoning about willingness in networks of
agents. In SELMAS ’06: Proceedings of the 2006 inter-
national workshop on Software engineering for large-scale
multi-agent systems, pages 91–98, New York, NY, USA,
2006. ACM Press.

Figure 10. DIDG of Bugzilla according to De-
bian 4. Orange nodes are always installed,
and orange edges the most popular option to
satisfy an abstract dependency.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:32 from IEEE Xplore. Restrictions apply.

Figure 12. SIDG of Most Popular Instance of Bugzilla in Debian 4 (optional depend. not shown).

Figure 11. SIDG of Bugzilla according to De-
bian 4 (optional dependencies not shown).

[4] P. T. Devanbu and S. Stubblebine. Software engineering for
security: a roadmap. In ICSE ’00: Proceedings of the Con-
ference on The Future of Software Engineering, pages 227–
239, New York, NY, USA, 2000. ACM Press.

[5] X. Franch, G. Grau, and C. Quer. A framework for the def-
inition of metrics for actor-dependency models. In RE ’04:
Proceedings of the Requirements Engineering Conference,
12th IEEE International (RE’04), pages 348–349, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

[6] X. Franch and N. A. Maiden. Modelling component de-
pendencies to inform their selection. In ICCBSS ’03: Pro-
ceedings of the Second International Conference on COTS-
Based Software Systems, pages 81–91, London, UK, 2003.
Springer-Verlag.

[7] D. M. German. Using software trails to reconstruct the evo-
lution of software. Journal of Software Maintenance and
Evolution: Research and Practice, 16(6):367–384, 2004.

[8] D. M. German. Using software distributions to under-
stand the relationship among free and open source software
projects. In 4th International Workshop on Mining Software
Repositories (MSR 2007), May 2007.

[9] J. M. González-Barahona, G. Robles, M. Ortuño, L. Rodero,
J. Centeno, V. Matellan, E. Castro, and P. de-las Heras. Ana-
lyzing the anatomy of GNU/Linux distributions: methodol-
ogy and case studies (Red Hat and Debian). In S. Koch, edi-
tor, Free/Open Source Software Development, pages 27–58.
Idea Group Publishing, Hershey, Pennsylvania, USA, 2004.

[10] J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung, and V. P. Ran-
ganath. Cadena: an integrated development, analysis, and
verification environment for component-based systems. In
ICSE ’03: Proceedings of the 25th International Conference
on Software Engineering, pages 160–173, Washington, DC,
USA, 2003. IEEE Computer Society.

[11] M. J. Karels. Commercializing open source software.
Queue, 1(5):46–55, 2003.

[12] D. L. Parnas. On the criteria to be used in decomposing sys-
tems into modules. Commun. ACM, 15:1053–1058, 1972.

[13] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr, and
J. J. Amor. Mining large software compilations over time:
Another perspective of software evolution. In Proceedings
of the Third International Workshop on Mining Software
Repositories, pages 3–9, Shanghai, China, May 2006.

[14] G. Robles, J. M. González-Barahona, and M. Michlmayr.
Evolution of volunteer participation in libre software
projects: evidence from Debian. In Proceedings of the 1st
International Conference on Open Source Systems, pages
100–107, Genoa, Italy, July 2005.

[15] L. Rosen. Open Source Licensing: Software Freedom and
Intellectual Property Law. Prentice Hall, 2004.

[16] M. Weiss, B. Esfandiari, and Y. Luo. Towards a classifica-
tion of web service feature interactions. Comput. Networks,
51(2):359–381, 2007.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:32 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

