Visualizing Software Architecture Evolution using Change-sets

Andrew McNair, Daniel M. German, and Jens Weber-Jahnke
Computer Science Department
University of Victoria
Victoria, Canada
{amcnair,dmg,jens} @cs.uvic.ca

Abstract

When trying to understand the evolution of a software
system it can be useful to visualize the evolution of the sys-
tem’s architecture. Existing tools for viewing architectural
evolution assume that what a user is interested in can be
described in an unbroken sequence of time, for example the
changes over the last six months. We present an alternative
approach that provides a lightweight method for examining
the net effect of any set of changes on a system’s architec-
ture. We also present Motive, a prototype tool that imple-
ments this approach, and demonstrate how it can be used
to answer questions about software evolution by describing
case studies we conducted on two Java systems.

1 Introduction

Software evolution refers to the behavior of software
systems as they change over their lifetimes. In a process
akin to biological evolution, it is now generally agreed that
software systems must continually adapt to remain useful.
There are three main groups interested in this evolution:
developers, researchers, and managers. Developers want
to understand how the current state of a software system
has come to be in order to better maintain the system; re-
searchers want to learn about how systems in general evolve
by studying examples of how specific projects evolved; fi-
nally, managers want to monitor the progress being made by
their development team towards current development goals,
and to use information about previous progress to help plan
future development work.

Although any artifact generated during the development
process may provide insight about the evolution of the sys-
tem, the majority of research has focused on examining the
artifacts stored in a software repository, and their associ-
ated metadata (see [15] for a comprehensive review of this
type of research). A common technique for helping to sum-
marize the massive amounts of data stored in a software

repository is to visualize it, with the varied motivations for
studying software evolution resulting in a diverse set of ap-
proaches to visualizing the data [23].

We believe that existing approaches to architecture evo-
lution visualization suffer from a lack of flexibility in how
they allow users to customize their view. Generally, these
tools allow users to filter their results by time period, for
example showing all changes to the architecture within the
last six months, and by level in the architecture’s hierar-
chy, for example showing all changes that occurred within
a specific package. This type of customization is sufficient
to show a high-level overview of how the architecture has
changed over time; however, we believe greater flexibility
is necessary to deal with the broad range of questions that
developers, researchers, and managers may want to answer.

As with most other approaches, our visualization shows
the evolution of the semantic entities that make up the ar-
chitecture of the software system being studied (such as the
packages, classes, and methods). As with some other ap-
proaches, we provide the ability to understand how partic-
ular changes have affected the evolution of the system, and
to discover further details of these changes (including who
made the change, and when). In what we believe is a novel
contribution, we also allow users to view the net effect on
the system’s architecture of any set of changes they consider
logically related. We call this set the change-set.

The structure of the rest of this paper is as follows. Sec-
tion 2 introduces our method for visualizing architecture
evolution. Section 3 presents Motive, a prototype tool we
have created that implements this visualization. Section 4
reports the case studies we conducted to evaluate whether
our approach has merit. Section 5 describes related work.
Finally, Section 6 concludes the paper and discusses future
work.

2 Modeling software architecture evolution

Most tools that explore the evolution of the architec-
ture of a system have taken a time-based approach which

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

shows how the state of the system (or a sub-system), has
changed between two moments in time. These moments
might be releases of new versions of the system, two dates
that the user is interested in, or two particular modification
records (MRs, equivalent to a logical commit). In combi-
nation with the metadata available from the version control
system, these tools can be used to answer questions such
as “who made an architectural change during this period?”,
“what particular MRs changed the architecture during this
period?”, and “what has been added during this period?”

However, time-based approaches do not provide good
support for evaluating the impact of several MRs when
these MRs are not sequential in time. For example, in the
case where three MRs (a, b and c¢) were applied (in that or-
der) to the system, time-based approaches would have dif-
ficulty showing the user the impact of only @ and c on the
architecture while ignoring the effects of . Our approach is
geared towards answering these types of questions, when a
user says, “I want to know the impact of these specific MRs
and I do not want to consider the impact of the other MRs.”

Rather than using a time-based approach we allow the
user to examine the effects of a change-set, which we de-
fine as being a subset of the MRs of a system. There are no
restrictions on what MRs can compose a change-set; it can
be built by enumeration (listing each MRs in the change-
set), or by stating a property that its MRs should satisfy.
These properties come from either the MRs’ metadata, such
as “MRs by a given developer between these dates,” or syn-
thesized information, such as “MRs that represent defect
fixes” or “MRs that involve refactoring.”

We indicate the architecture evolution of a system in
terms of the evolution of the entities of the system that de-
fine its architecture, such as packages, classes, methods,
functions, etc., and the relationships between those enti-
ties. The period of evolution we are interested in takes
place from the starting version of the system, immediately
before the first MR in the change-set, through the MRs in
the change-set, and up to the final version of the system,
immediately after the last MR in the change-set. Our dia-
grams show the architecture of the system over the period of
evolution, with each entity/relationship annotated to show
how it was affected by the MRs in the change-set. The sim-
plest type of annotation assigns one of the following states
to each entity/relationship:

Added. Entities/relationships were added in some MR.
They do not exist in the starting version of the system.

Deleted. Entities/relationships were deleted in some MR.
They do not exist in the final version of the system.

Phantom. Entities/relationships were added in some MR,
and then deleted in a later MR. They do not exist in the
starting or final version of the system.

Modified. Entities/relationships were affected by at least
one MR (and are not added, deleted, or phantom).

Metadata. Entities/relationships had their metadata, such
as their name, affected by at least one MR (and are not
added, deleted, or phantom).

Unchanged. Entities/relationships were not affected by
any MRs.

These states can also represent the moving of an entity.
This can be shown by changing the entity’s metadata (to
reflect its new location), deleting any existing relationships
dependent on its old location, and adding these relationships
to its new location.

2.1 Architectural impact view

We show the impact of the change-set on the system’s ar-
chitecture using what we term an architectural impact view.
An architectural impact view is based upon an architectural
diagram (such as a UML or E-R diagram) that has been en-
hanced to depict the impact that the change-set had on the
system. Neither UML nor E-R diagrams prescribe the use
of color; for that reason we have chosen different colors to
show the impact of the change-set on each of the elements
of these diagrams (other visual attributes could be used, if
desired).

In an architectural impact view we draw each en-
tity/relationship in a color that corresponds to its final state
(saturation can be used to depict the “amount” of change an
entity/relationship suffered—such as the proportion of MRs
in the change-set that modified it). Other annotations meth-
ods (such as overlays) can display more information about
the list of events that occurred to each entity/relationship
(such as changes in the metadata).

To exemplify the architectural impact view we will use
a simple system that is composed of five architectural en-
tities: A, B, C, D, and E (they could represent classes in
the system). There exist three users (Authorl, Author2, and
Author3) that have made changes (a total of 6 MRs) to the
system between the system’s two releases (R1 and R2). The
entities in our example system and their changes are de-
picted in Figure 1. Figure 2 shows the state of the system at
R1 and R2. In this small example we are using simplified
relationship diagrams which display entities and the exis-
tence of relationships between them. Because in this exam-
ple we are focusing on the entities, the types of relationships
are not specified, nor do we track changes to relationships
except when an entity is added or deleted. By comparing
the “before” and “after” diagrams one can infer the entities
and relationships that have been added and deleted (but not
modified or phantom entities/relationships).

Figure 3 shows an architectural impact view of our ex-
ample system, where the change-set includes all MRs. We

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

Author1: Added D Author1: Deleted A

Author2: Modified B

Author2: Deleted E

Author3: Modified A | Author3: Added E
*

R1 R2
\’ N
¥ \‘1
Lal Ll
Entities: A,B,C Entities: B,C,D

Figure 1. Evolution of an example system

A B
\
C
AtR1
i C
/
AtR2 D

Figure 2. Simplified relationship diagrams for
the example system at R1 and R2

use the following colors to depict the state of each en-
tity/relationship: green represents added; yellow, modified,
black, deleted; pink, phantom; grey, unchanged; and blue,
metadata'. This view provides a comprehensive overview
of what architectural change occurred between R1 and R2:
A was deleted (black), B was modified (yellow), C' was
unchanged (grey), D was added (green), and E was added
and then deleted, and is shown as phantom (pink). From
this view it is also possible to derive the architectural state
of the system at points R1 and R2. All the entities that are
not added nor phantom exist at R1, and all the entities that
are not deleted nor phantom exist at R2.

We can also create different change-sets and show their
impact. The simplest possible change-set includes only one
MR. For example, Figure 4 shows the effect of the fifth MR
(A is deleted)?.

Figure 5 shows the impact of the change-set comprising
the MRs of author Author2. Author2 modifies B (MR #3)

For those readers viewing a black and white version of this document,
we invite you to see the images in the electronic version where they are
displayed in color. For your benefit we also describe in footnotes the colors
used in the diagrams.

2 A is black and the rest of the nodes are grey.

B
E D

Figure 3. Architectural impact view compar-
ing R1 to R2 (change-set is equal to all the
MRs in between both releases)

.
E D

Figure 4. The impact of the fifth MR. In this
case the change-set and the total set both
contain only one MR. A is deleted

and deletes E (MR #6)3. This diagram does not reflect the
current architecture at the time of R2 (see Figure 2), only its
evolution in response to the MRs authored by Author2. For
instance, it does not show that A is no longer in the system
(A was not deleted by Author2).

2.2 Computing the impact of a change-set

The combinatorial explosion of possible change-sets pre-
cludes the possibility of pre-computing their impact. In-
stead, we have developed a lightweight algorithm that
quickly computes the impact of a change-set selected by
the user. This approach works over the period of interest:
the period of time between the earliest and the latest of the
MRs in the change-set. We refer to the MRs in this period
of interest as the fotal-set. The change-set is a subset of the
total-set.

3A,C, and D are grey, while E is black and B is yellow.
A B

-

Figure 5. The impact of the changes of Au-
thor2

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

Evaluating the impact of some MRs while ignoring oth-
ers is not trivial. An ignored MR might add, change, re-
move, rename, or move entities that are subsequently al-
tered by a later MR. Although we are only interested in the
effects of the MRs in the change-set we need to be aware
of the effects of some other MRs. For example, we need to
know if an entity or relationship is added or deleted in any
MR in the total-set, whether is part of the change-set or not.

From the version control history of the system we have
extracted from each MR information about what entities
and relationships were altered, and how (added, deleted,
modified, etc.). This operation is done only once per MR.

Our algorithm takes as input the list of MRs in the total
set (including the information of what and how they have
changed the system), and the list of MRs in the change-set.
Its output is a list of entities and relationships, annotated
within an architectural view with a summary of the net ef-
fect of the MRs in the change-set.

The algorithm has two stages. It begins by analyzing
the state of the system at the starting version and build-
ing a “current list” of entities and their relationships, and,
for each entity/relationship associating an empty “annota-
tion list” that will keep track of its changes. Now, for each
MR in the total-set, in chronological order:

e For every entity/relationship in the current list that has
had its metadata altered: add this event to the appropri-
ate annotation list. As an example, this would record
if an MR has changed the name of an entity.

e For every entity/relationship added in the MR: add it
to the current list, and create an empty corresponding
annotation list.

e [f the MR is in the change-set (which means the user is
interested in the changes made in that MR), for every
entity/relationship in the current list that was added,
modified, or deleted in the MR: add the event to the
appropriate annotation list.

At this point we can display to the user all the entities
in the system and the relationships between the entities.
Each entity/relationship present at some point during the
period of interest will be present in the current list, with
its metadata reflecting its most current value (renaming an
entity/relationship will update its metadata). The second
stage of the algorithm inspects the annotation list of each
entity/relationship to determine its final state:

e [f the entity/relationship did not have any annotation
then set its state to unchanged (this could include an
entity/relationship added by an MR not part of the
change-set);

e otherwise, if its first annotation is added and the last
one deleted, then set its state to phantom;

e otherwise, if its first annotation is added, then set its
state to added,;

e otherwise, if its last annotation is deleted then set its
state to deleted,;

e otherwise, if it contains a modified, deleted, or added
annotation, then set its state to modified (this could in-
clude an entity/relationship that was deleted and then
added again);

e otherwise set its state to metadata.

The final state of the entity/relationship determines the
color used to depict such entity. Using other visual at-
tributes or overlays the annotation list could be used to dis-
play other information, such as who performed the changes,
when, how many times was the entity/relationship changed,
how recently was it changed, etc.

3 Motive

To evaluate our method, we have developed a prototype
tool that enables us to visualize the evolution of Java sys-
tems stored in a CVS repository. We named our tool Motive,
as one of our main goals is to provide greater understanding
of the reasons for architectural drift and evolution. CVS was
chosen because it is a popular choice of software repository
for open source software developers and supporting CVS al-
lows us access to a large number of software systems. Java
was chosen because it is a popular language and is far eas-
ier to statically analyze than languages that support pointers
such as C++.

3.1 Preprocessing

We begin by preprocessing the data in the CVS reposi-
tory so we have the information necessary to compute the
impact of the MRs in a change-set. We use a three-step pro-
cess. In Step 1 we use softChange [7] to extract facts from
the CVS repository. The output of this step is a database
containing information about each MR (the author, log,
date, and time), as well as the file revisions associated with
each MR. Although softChange extracts information about
all MRs in the CVS repository, we only consider changes
to the trunk of the CVS repository, ignoring branches. This
allows us to simplify our visualization requirements.

In Step 2, for each trunk MR the most recent version of
any files modified in that MR are scanned, and the current
model of the software system’s architecture is updated ac-
cordingly. As with [12] we use a scanning and not a parsing
approach, giving us the ability to include changes that may
have “broken the build.” We use QDox [20] as a scanner,
which gives us information about both entities (packages,

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

classes, interfaces, methods, and fields), and relationships
(specialization and generalization). We also attempt to de-
tect usage dependency relationships; although, because we
are not parsing method bodies, we may miss some of these.

In Step 3 we compare the entities and relationships exist-
ing in the software system in two consecutive MRs to iden-
tify the effect of the latter MR relative to the first. Our im-
plementation is currently more limited than our model. We
are not yet detecting the renaming or moving of entities; and
consequently, nor are we displaying metadata changes. We
plan to extend our implementation to incorporate existing
methods for detecting renaming and moving, such as the
Bertillonage analysis approach developed by Tu and God-
frey [26].

3.2 User interface

Motive can be used to visualize the net effect of a
change-set on a software system’s architecture, or to export
this visualization to more mature graph visualization tools
that support GDL or GXL. We are currently using aisee [1]
for the visualization of large graphs.

806 Motive
Query View Graph

20031‘03123““ I T W T = LI LI LIIE2005/12/27

2004/02/17 2005/12/27

[MRS

(¥ Changes

¥ (5 Added
" org.jgraph.algebra
| org.jgraph.celiview
_ org.jgraph.example

rg.jgraph.algebral

_ org.jgraph.layout —
' org jgraph.util
B [T Modified Acme
P [Deleted
| Phantom
(7 Entities :
v (57 Acme — | .

" DELETED
P |7 Acme.JPM.Encoders
B |7 com.eteks filter
B [org.jgraph
P {7 org.jgraph.algebra
B | org.jgraph.cellview
¥ {1 org.jgraph.example
P [org.jgraph.layout
b [org.jgraph.net
» |7 org.jgraph.pad
B [org.jgraph.pad.actions
P {3 org.jgraph.pad.resources
P |7 org.jgraph.util
B |7 org.jgraph.utils
B [org.jgraph.utils.gui

“|lacme.JPM.Encoder: org.jgraph.util

org.shetline.io org.jgraph.pad.act..-

[—————] R i
Figure 6. An overview of Motive

Figure 6 shows an overview of the three main panels of
the Motive tool:

1. Temporal Slider. The Temporal Slider shows the MRs
in the change-set and allows the user to quickly ad-
just the period under display by dragging either end of
the slider. The upper dates indicate the spread of MRs
in the most recent query, in this case the period under

consideration goes from 2003/08/28 to 2005/12/27.
The lower dates indicate the period currently being
studied in the change-set, in this case from 2004/02/17
to 2005/12/27. The user can also “lock” the two sliders
together to view the effects of a particular MR.

The slider itself consists of two halves. The upper half
shows all the MRs in the change-set, colored accord-
ing to the author of each MR. On the bottom half we
highlight MRs that stand out from the other MRs in the
change-set. We plan to allow the user to select different
metrics by which “stand out” can be defined; currently
we show the 10 MRs, of those currently under con-
sideration, that have modified the most files. For ex-
ample, we can see that the MR that modified the most
files, shown as the largest MR on the bottom half of
the slider, occurred towards the end of the MRs in the
change-set. We can also look up the color mapping of
the MR (not shown) to determine which author made
the change.

2. Hierarchical Summary. This shows a textural view of
the details of the MRs in the change-set, including each
MR’s date, author, and list of entities it affected, and
the net effect of all the MRs in the change-set on each
architectural entity.

3. Graph View. This shows the net effect of the MRs in
the change-set on the architecture of the system using
the visualization we developed. Currently these views
are limited to UML class and package diagrams.

e0e Query
“Queries: Select the MRs of a specific author, or group of authors

Options | Results |

include Author Number of MRs. m
alderg 55

bessyboo 45

d_benson 144

rvalyi 929

v-woods 1

Select all MRs
Select Berween Dates
Select by Author
Select by Log

Show Table Data

(Crun) Cview) (Ceancel)

Figure 7. The Query Dialog

To make it easy to select change-sets, we have created
a few sample queries, as well as a plugin mechanism for
adding queries. The only requirement of these queries is
that they return a list of MRs, enabling the construction of
a change-set. Figure 7 shows an overview of the Query
Dialog, which lets the user run one of the sample queries
we developed. In this case, the user has chosen “select by
author” which lets the user build a change-set from the MRs
made by one or more authors.

4 Case studies

Our visualization method and Motive tool were designed
to summarize information about a software system’s evolu-

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

tion. In order to evaluate their effectiveness, we conducted
two case studies. In each case study we asked the same
questions about the evolution of the software system under
consideration, and tried to answer these questions with Mo-
tive.

4.1 Questions

The questions we posed were based on scenarios that we
consider are typical for developers and their managers, and
on typical research questions posed by software evolution
researchers. These scenarios were largely created based on
plausible use cases rather than empirical data. A notable
exception are the scenarios developed by Wu [28] that are
based on a survey Wu et al conducted about the concerns of
developers and managers [29] .

Researcher questions

1. What packages are highly coupled? This is a first
step in identifying the evolution-critical and evolution-
sensitive modules discussed by Tonu, Ashkan, and
Tahvildari [25]. We consider a package highly cou-
pled if it contains a high number of packages depen-
dent on it, relative to the other packages in the system.

2. What packages were frequently modified in the past?
Identifying the packages that were most prone to
change in the past indicates what parts of the archi-
tecture were most affected by software evolution. We
consider a package frequently modified if it has been
modified a large number of times relative to the other
packages in the system.

3. What were the architecturally disruptive changes in the
past? A well-designed architecture should confine the
concepts that are prone to change [18]. To identify
changes that broadly affected the architecture, and so
were probably not anticipated by the original devel-
opers, we considered the term “architecturally disrup-
tive” from a number of different perspectives, includ-
ing the number of classes and dependencies the change
added, changed, or deleted.

4. What packages have been modified by a broad group of
developers? That a module is modified by many devel-
opers could be considered a sign of good programming
(many developers know these modules and can modify
them) or poor design (the need for the module to be
modified by many people might hint at a need to split
the module). We determine what constitutes a “broad
group of developers” from the percentage of authors in
the system that have made changes to the package.

5.

10.

Given a keyword, which changes used it in their com-
mit log and how did they affect the architecture? As
described by Chen et al [4], CVS log comments often
indicate both the purpose of the change and, indirectly,
the purpose of the code. They use the example of the
CVS log “added footnote feature” which indicates the
corresponding change is related to footnotes and that
the modified source code has to do with footnotes. In
this example, viewing all the changes with the keyword
“footnote” indicates both the architectural entities that
are related to footnotes, and how much effort it has
taken to maintain the footnote feature.

Developer questions

When did a particular architectural entity appear?
Voinea, Telea, and van Wijk [27] observed that identi-
fying the context in which a piece of code appeared is
an important use case for a software maintainer. We
consider the context of the entity appearing to con-
sist of the other entities and relationships that were
changed as part of the addition MR, and the other de-
tails of the MR, in particular its log comment.

. Who has made the most modifications to a mod-

ule/package, and who made the last modification? Wu
[28] noted the importance of knowing who is making
changes to which part of the software. For example,
in the case a developer looking for someone to ask for
help understanding an unfamiliar package, it is likely a
suitable developer to ask for help is the developer who
has made the most modifications to the package or the
developer who last modified it.

What has been changed in the last given days globally
or in a specific package? 1t is often the case, as re-
ported by Wu [28], that a particular developer will be
inactive for a small period of time, such as when she
goes on a vacation. When the developer becomes ac-
tive again, she will want to know what has changed in
the project, particularly in certain packages, during the
time she was away.

What happened in a particular commit? Wu et al [29]
found that developers will often want to examine a par-
ticular commit. This is arguably the most common use
case for a developer trying to understand the evolution
of a software system.

Manager questions

What packages have developers recently modified? A
manager interested in the progress developers are mak-
ing towards current goals may be interested in the

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

packages developers are currently working on. As
well, there is some evidence that classes changed re-
cently are likely to be changed in the future [9].
We identify the recently modified packages by find-
ing what developers have been active in the last 2
weeks, and, of those developers, what packages they
have modified in their last 5 MRs.

11. What packages have not been modified in the “recent”
past? Packages that have not been modified a lot in
the recent past may be stable architectural entities that
will not require a lot of maintenance effort in the near
future, or dead code that should be removed. We con-
sider the “recent past” as being a user-defined concept
relative to the MRs in the project (for example, the “re-
cent past” can be defined as the last 10 MRs).

12. How productive has a particular developer been? Nu-
merous researchers have noted how data in a ver-
sion control system could help monitor development
progress [8] [28] [24]. Productivity can be measured
in many ways, such as by the number of MRs, or by
the amount of architectural entities modified.

13. How much change was there between the last two re-
leases? The amount of effort involved in readying the
system for previous releases may help with future plan-
ning. This requires identifying when previous releases
of the system occurred, and measuring the changes that
happened between those releases in terms of the pack-
ages and classes affected.

4.2 Systems studied

Motive was used to answer the previous questions during
the study of two systems: JGraphpad [14] and SQuirreL-
SQL [22].

JGraphpad is an open source diagram editor included
with JGraph. JGraphpad is a small software system, con-
sisting of 357 classes and 16 packages. We studied its evo-
lution over 344 MRs that were spread over more than 2
years, from August 2003 to December 2005.

SQuirreL SQL is an open source graphical Java program
designed to visualize the structure of, and interact with any
JDBC compliant database. SQuirreL SQL is a medium-
sized system, with over 1500 classes and 150 packages. We
examined its evolution over roughly 4 years, from Decem-
ber 2002 to January 2007. Over those 4 years we identi-
fied more than 6000 MRs. However, due to a problem with
how we extracted the MR information using softChange, in
some cases individual changes with the same log and times-
tamp were not properly combined into the same MR. This
did not affect how we answered the questions or the oper-
ation of the tool, but it did increase the numerical value of
the MRs in some of our answers.

‘squﬁrrel,sql .plugins.i18n

squirrel_sql .fu.util

Figure 8. New dependencies from interna-
tionalization

4.3 Results

Motive was able to answer the developer and manager
questions posed, and was able to help with the researcher
questions, although questions 1 and 3 could only be par-
tially answered. In Question 1, it was possible to detect
from JGraphpad’s small dependency diagram what the most
coupled packages were. However, the diagram of SQuir-
rel. SQL proved too large to easily answer the question. In
Question 3, it was possible to determine from the Tempo-
ral Slider the most architecturally disruptive changes ac-
cording to one criteria (files modified). However, direct
database queries were needed to determine the most disrup-
tive changes according to the other criteria specified in the
question.

As expected, the ability to create flexible change-sets
was useful. This usefulness manifested itself in three areas:

1. Studying groups of changes based on log entries

For example, one term that frequently occurs in the logs of
SQuirreLSQL is “i18n”, a standard abbreviation for interna-
tionalization. In fact, 783 MRs have this term in their logs.
If this term only exists when the change has something to
do with internationalization, then over 10% of the changes
to the system had to do with internationalization.
Motive was used to view the effect of MRs which had
the term “i18n” in their log, except for two MRs re-
moved because their very long logs seemed to indicate
that internationalization was only a small part of the
reason for their change. Figure 8 shows a summary
of how internationalization-related changes have affected
the software architecture. To make the diagram more
clear, most packages have had their name replaced with
“.”. From the diagram it can be seen that the added
sql_squirrel.plugins.i18n package is involved in 11 new de-
pendencies and the modified package squirrel_sql.fw.util is
involved in 21 new dependencies. Examining the dependen-
cies squirrel_sql.fw.util is involved in shows they almost all
come from two added classes, StringManager and String-
ManagerFactory, both of which, from their comments, have
to do with loading internationalization strings.

2. Examining author changes
Answering Question 12 requires highlighting the changes
of a particular author. During our study of JGraph-
pad, we selected the changes of d_benson to exam-

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

org. jgraph.pad.actions ->[com .eteks . Fi1ter

{ org.jgraph<--org.jgraph.pad

/7lorg.joraph.utils| /[org.joraph.otils.qui|v5 - ¢ [org.jgraph.util| [org.jgraph.exampls|

org.igraph.pad.resources| org.jgraph.layout [org.jgraph.cellview| |org.jgraph.algebral

Figure 9. Modifications made by d_benson in
the last 3 months

SuglyamalayoutAlgorithm

CircleGraphLayout

Point findMinimumAndSpacing (CellView(] graphC

Figure 10. A highlight of modifications
to SugiyamalLayoutAlgorithm in the
org.jgraph.layout package

ine. Figure 9 shows a high-level overview of the ef-
fect d_benson has had on the architecture over the last
3 months we have data for. Four packages have been
modified (org.jgraph, org.jgraph.layout, org.jgraph.pad, and
org.jgraph.pad.actions), and no new dependencies have
been added. Figure 10 shows a highlight of the
changes to the Sugiyamal.ayoutAlgorithm class in the
org.jgraph.layout package. The class has had a num-
ber of fields and methods modified, and the findMinimu-
mAndSpacing() method added.
3. Filtering large transactions

In [31], Zimmermann and Weissgerber talk about the need
to deal with “large transactions” during the preprocessing
of CVS data. They suggest transactions that modify a large
number of files, such as the changing of an include file,

should be filtered out of the analysis. An example of this
type of change that occurred to JGraphpad was MR 46,
which changed the copyright text of files. While in a stan-
dard architecture-centric view it may be necessary to fil-
ter out such changes as a preprocessing step, some types
of analysis might require examining this change. Our ap-
proach allows the user to first create a general query that re-
trieves a superset of the MRs they are interested in, and then
selectively remove undesired changes from the change-set.
This eliminates the need to decide in a preprocessing step
what changes should be removed.

5 Related work

One classification for software visualization tools was
developed by Maletic, Marcus and Collard [17], in which
they describe the tools according to five dimensions:
i) Tasks: why is the visualization needed? ii) Audience:
who will use the visualization? iii) Target: what is the data
source to represent? iv) Representation: how to represent
it? v) Medium: where to represent the visualization?

We believe the majority of software evolution visualiza-
tions can be grouped into four broad categories according
to the target of each visualization. We term these cate-
gories: artifact-centric, metric-centric, feature-centric, and
architecture-centric. Our work falls into the architecture-
centric category, though change-sets may be of use to other
visualization methods.

5.1 Artifact-centric

These tools are designed to provide a view of how some
artifacts stored in the software repository change over time,
especially the source code files and the lines of code within
the files. Examples of tools that fall in this category include:
the visualization of Van Rysselberghe and Demeyer [21],
Revision Towers [24], Evolutionary Storyboards [2], Xia
[28], and CVSScan [27].

5.2 Metric-centric

These tools are designed to provide a view of how some
software metrics have changed over time. Many tools in-
clude some form of metrics in their visualization, but tools
in this category use metrics as the primary target. Examples
of tools that use this approach are: Evolution Matrix [16],
the work done by Bieman, Andrews, and Yang [3], RelVis
[19], the Hierarchy Evolution Complexity View [10], and
SourceViewer3D [30].

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

5.3 Feature-centric

These tools are designed to provide a view of how fea-
tures of the software have changed over time. Because there
is no direct way to extract the features from source code,
this requires an analysis performed on at least one other
data source in addition to the code in the software repos-
itory, such as comments in the logfiles, data from a bug
repository, or execution traces of a running software sys-
tem. Feature-centric approaches include that of Fischer and
Gall [5], and the work of Greevy, Ducasse, and Girba [11].

5.4 Architecture-centric

These tools are designed to provide a view of how the
architecture of the software has changed over time. There
are three main approaches to architecture-centric visualiza-
tion: visualizing the entire architectural evolution at once,
showing deltas of the architectural differences between two
releases, and a unified approach that gives both an overview
of the architectural change and highlights of specific differ-
ences between releases.

Gall, Jazayeri and Riva [6] developed an example of an
overview approach for visualizing software release histories
using 3D diagrams. Each release had its structure displayed
as a 2D diagram, and the 3D diagram displayed a succes-
sion of these releases on a line. This 3D view enables a user
to detect the main changes in the evolution of the system,
while the 2D view allows the user to view in more detail
the changes to subsystems in a release. However, this ap-
proach does not allow viewing the effects of specific MRs,
or groups of MRs.

GASE, Graphical Analyzer for Software Evolution [13]
is an example of an approach to comparing two releases of
a software system by visualizing architectural deltas. Color
is used to illustrate the change between the two releases,
showing what is added, deleted, or common between the
releases. Holt and Pak, the authors of GASE, also men-
tion that their visualization approach could be extended to
viewing multiple releases by using the color intensity to
represent how recently a module or relationship was added
or removed. Although we are representing more types of
change, our coloring scheme is similar, and we are inter-
ested in experimenting with GASE’s change in color inten-
sity over time.

One tool that provides both an overview of how the soft-
ware architecture has evolved and a more detailed descrip-
tion of the changes between particular releases is Beagle
[26]. One of Beagle’s panels shows a tree view of the sys-
tem’s structure at one particular version. The other shows a
dependency diagram of how the software has evolved over
a selected number of versions either to or from the ver-
sion of the system highlighted in the other panel. Color is

used to indicate entities that have been added, modified, and
deleted, with intensity used to indicate ordinal attributes,
such as how long ago an entity was added. Beagle detects
the moving and renaming of entities between versions; as
mentioned earlier we need to integrate this type of analysis
in order to detect metadata changes.

Another technique for viewing both an overview of how
software changes over time and a more detailed view of par-
ticular times is animation. An example of an animation ap-
proach is YARN [12], which uses animation to display the
architectural dependency graph evolving over time, and sev-
eral coloring schemes to emphasize different aspects of the
evolution. As with our approach, YARN allows the fine-
grained viewing of individual MRs, which are each pre-
sented as a frame in the animation. In contrast to our ap-
proach, YARN is focused on showing the evolution of the
software over unbroken periods of time, not over change-
sets.

6 Conclusions and future work

In this paper we presented a novel type of architectural
visualization that enables the user to view the effects of a
particular MR, or a set of MRs, on the architecture of a soft-
ware system. Our intuition was that the standard methods of
filtering by time period or level in the architecture’s hierar-
chy were insufficient for some tasks. We also believed that
viewing the impact of change-sets might help with these
tasks. Although more evaluation is required, based on two
case studies we conducted of the prototype tool that imple-
ments our visualization, we believe that our intuition was
correct. Visualizing the impact of change-sets seems to
have a lot of promise in its ability to help developers, man-
agers, and researchers trying to understand the evolution of
a software system.

In the future, we hope to apply change-sets to other
methods of evolution visualization, including artifact, met-
ric, and feature-centric approaches. As well, there is a lot
of work to be done in improving the implementation of our
current architecture-centric approach, and possibly extend-
ing it, for example with animation. Another research direc-
tion would be to explore the different types of change-sets
that can be constructed. Of critical importance in direct-
ing this research is conducting empirical studies to deter-
mine the limitations users have with current visualization
approaches.

References

[1] AbsInt. aisee website: http://www.aisee.com/.
[Online; accessed 15 - June - 2007].

[2] D. Beyer and A. E. Hassan. Evolution storyboards: Visu-
alization of software structure dynamics. In International

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

(3]

[4

—

[3]

[6]

(71

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

(16]

Conference on Program Comprehension (ICPC’06), pages
248-251. IEEE Computer Society, 2006.

J. M. Bieman, A. A. Andrews, and H. J. Yang. Under-
standing change-proneness in oo software through visual-
ization. In IWPC ’03: Proceedings of the 11th IEEE Inter-
national Workshop on Program Comprehension, page 44.
IEEE Computer Society, 2003.

A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang,
and A. Michail. Cvssearch: Searching through source code
using CVS comments. In ICSM ’01: Proceedings of the 17th
IEEE International Conference on Software Maintenance,
page 364. IEEE Computer Society, 2001.

M. Fischer and H. Gall. Visualizing feature evolution of
large-scale software based on problem and modification re-
port data. Journal of Software Maintenance and Evolution:
Research and Practice, 16:385-403, 2004.

H. Gall, M. Jazayeri, and C. Riva. Visualizing software re-
lease histories: The use of color and third dimension. In
ICSM °99: Proceedings of the IEEE International Confer-
ence on Software Maintenance, page 99. IEEE Computer
Society, 1999.

D. M. German. Mining cvs repositories, the softChange ex-
perience. In Proceedings of the First International Workshop
on Mining Software Repositories, pages 17-21, 2004.

D. M. German and A. Hindle. Visualizing the evolution of
software using softChange. Journal of Software Engineer-
ing Knowledge Engineering, 16(1):4-22, Feb. 2006. Special
Issue of Best Papers SEKE 2004.

T. Girba, S. Ducasse, and M. Lanza. Yesterday’s weather:
Guiding early reverse engineering efforts by summarizing
the evolution of changes. In ICSM ’04: Proceedings of
the 20th IEEE International Conference on Software Main-
tenance, pages 40-49. IEEE Computer Society, 2004.

T. Girba, M. Lanza, and S. Ducasse. Characterizing the evo-
lution of class hierarchies. In CSMR ’05: Proceedings of the
Ninth European Conference on Software Maintenance and
Reengineering, pages 2—11. IEEE Computer Society, 2005.

O. Greevy, S. Ducasse, and T. Girba. Analyzing software
evolution through feature views: Research articles. J. Softw.
Maint. Evol., 18(6):425-456, 2006.

A. Hindle, Z. Jiang, W. Koleilat, M. W. Godfrey, and R. C.
Holt. Yarn: Animating software evolutions. Accepted to
2007 IEEE International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT-07), 2007.

R. Holt and J. Y. Pak. Gase: visualizing software evolution-
in-the-large. In WCRE ’96: Proceedings of the 3rd Working
Conference on Reverse Engineering (WCRE ’96), page 163.
IEEE Computer Society, 1996.

JGraph. Jgraph website: http://sourceforge.net/
projects/jgraph/. [Online; accessed 15 - June -
2007].

H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and
taxonomy of approaches for mining software repositories in
the context of software evolution: Survey articles. J. Softw.
Maint. Evol., 19(2):77-131, 2007.

M. Lanza. The evolution matrix: recovering software evolu-
tion using software visualization techniques. In IWPSE ’01:
Proceedings of the 4th International Workshop on Principles
of Software Evolution, pages 37-42. ACM Press, 2001.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

J. I. Maletic, A. Marcus, and M. L. Collard. A task oriented
view of software visualization. In VISSOFT ’02: Proceed-
ings of the 1st International Workshop on Visualizing Soft-
ware for Understanding and Analysis, page 32. IEEE Com-
puter Society, 2002.

D. L. Parnas. Software aging. In ICSE ’94: Proceedings of
the 16th international conference on Software engineering,
pages 279-287. IEEE Computer Society Press, 1994.

M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualiz-
ing multiple evolution metrics. In Proceedings of the ACM
Symposium on Software Visualization, pages 67-75. ACM
Press, 2005.

QDox. Qdox website: http://gdox.codehaus.

org/. [Online; accessed 15 - June - 2007].

F. V. Rysselberghe and S. Demeyer. Studying software evo-
lution information by visualizing the change history. In
ICSM *04: Proceedings of the 20th IEEE International Con-
ference on Software Maintenance, pages 328-337. IEEE
Computer Society, 2004.

SQuirreLSQL. Squirrelsql ~ website:

//squirrel-sqgl.sourceforge.net/.
line; accessed 15 - June - 2007].

M. A. Storey, D. éubranié, and D. M. German. On the Use
of Visualization to Support Awareness of Human Activities
in Software Development:A Survey and a Framework. In
Proceedings of the 2nd ACM Symposium on Software Visu-
alization, pages 193-202, 2005.

C. M. B. Taylor and M. Munro. Revision towers. vissoft,
00:43, 2002.

S. A. Tonu, A. Ashkan, and L. Tahvildari. Evaluating archi-
tectural stability using a metric-based approach. In CSMR
'06: Proceedings of the Conference on Software Mainte-
nance and Reengineering, pages 261-270. IEEE Computer
Society, 2006.

Q. Tu and M. W. Godfrey. An integrated approach for study-
ing architectural evolution. In IWPC ’02: Proceedings of the
10th International Workshop on Program Comprehension,
pages 127-136. IEEE Computer Society, 2002.

L. Voinea, A. Telea, and J. J. van Wijk. Cvsscan: visual-
ization of code evolution. In SoftVis '05: Proceedings of
the 2005 ACM symposium on Software visualization, pages
47-56. ACM Press, 2005.

X. Wu. Visualization of Version Control Information. Mas-
ter’s thesis, University of Victoria, 2003.

X. Wu, A. Murray, M.-A. D. Storey, and R. Lintern. A
reverse engineering approach to support software mainte-
nance: Version control knowledge extraction. In WCRE,
pages 90-99, 2004.

X. Xie, D. Poshyvanyk, and A. Marcus. Visualization of cvs
repository information. In WCRE ’06: Proceedings of the
13th Working Conference on Reverse Engineering (WCRE
2006), pages 231-242. IEEE Computer Society, 2006.

T. Zimmermann and P. Weissgerber. Preprocessing CVS
Data for Fine-grained Analysis. In Proceedings of the First
International Workshop on Mining Software Repositories,
pages 2—6, May 2004.

http:
[On-

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:38 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

