Empir Software Eng (2006) 11: 369-393
DOI 10.1007/s10664-006-9004-6

An empirical study of fine-grained
software modifications

Daniel M. German

Published online: 31 May 2006
© Springer Science + Business Media, LLC 2006
Editors: Mark Harman, Bogdan Korel, Panos Linos, Audris Mockus, and Martin Shepperd

Abstract Software is typically improved and modified in small increments (we refer
to each of these increments as a modification record—MR). MRs are usually stored
in a configuration management or version control system and can be retrieved for
analysis. In this study we retrieved the MRs from several mature open software
projects. We then concentrated our analysis on those MRs that fix defects and
provided heuristics to automatically classify them. We used the information in the
MRs to visualize what files are changed at the same time, and who are the people who
tend to modify certain files. We argue that these visualizations can be used to
understand the development stage of in which a project is at a given time (new fea-
tures are added, or defects are being fixed), the level of modularization of a project,
and how developers might interact between each other and the source code of a system.

Keywords Software evolution - Version control - Software visualization -
Software artifacts

1 Introduction

Configuration management systems, and more specifically, version control systems
keep records of the modification history of a software project. The logs from these
systems track who modifies what, when and what the change was. CVS, the
Concurrent Versions System is arguably the most widely used version control
management system. In this paper we retrieved and analyzed the CVS logs of
several mature projects (PostgreSQL, Apache, Mozilla, GNU gcc, and Evolution) using
softChange, a tool that retrieves the history of a project, analyses and enhances the
history by finding new relationships within it, and allows users to navigate and
visualize this information (German et al., 2004). The first stage was to extract the file
revisions in a way similar to (Fischer et al., 2003b). A file revision is a modification to
its corresponding file. CVS does not keep track of “transactions,” and therefore, it is

D. M. German (<))

Software Engineering Group, Department of Computer Science,
University of Victoria, Victoria, Canada

e-mail: dmg@uvic.ca

@ Springer

370 Empir Software Eng (2006) 11: 369-393

not possible to know which files were committed at the same time by a given author.
In this paper we propose an algorithm to recover these transactions, which we call
Modification Records (MRs). MRs provide a fine-grained view of the evolution of a
software product. The majority of the modifications in an MR are to implement small
improvements to the source code or to fix defects in the project.

1.1 Research Questions

We started this study by posing some questions:

* What do typical MRs look like? Is it possible to automatically classify MRs into
different categories according to their purpose?

* Are MRs different in different stages of software development?

* What is the effect of modularization of the code base on the composition of MRs?

* Do files tend to be modified by only one developer?

*+ Can we infer some type of social network among developers from the
modification patterns of a software project?

* How can we visualize files and their relationship to MRs to answer some of the
above questions?

1.2 Organization

This paper is divided as follows: we continue in Section 2 by describing our
methodology. In Section 3 we analyze modification records and propose some
metrics and visualizations of MRs and their authors. We then continue with a
discussion of our results. In Section 6 we survey previous and related work in this
area. We conclude with a summary of this paper and propose future work.

2 Methodology

The first part of our research was the retrieval of the historical information from
CVS and the rebuilding of its MRs. As described in the previous section, CVS does
not keep track of which files are modified together and therefore, the first task was
to rebuild this information. softChange uses a heuristic that is based on a sliding
window algorithm to rebuild MRs based on its component file revisions. This
algorithm takes two parameters as input: the maximum length of time that an MR
can last ,,.¢, and the maximum distance in time between two file revisions 7;,,,,. This
algorithm is depicted in Fig. 1. Briefly, a file revision is included in a given MR if a)
all the file revisions in the MR and the candidate file revision were created by the
same author and have the same log (a comment added by the developer when the
file revisions are committed); b) the candidate file revision is at most 7,,,,,Seconds
apart from at least one file revision in the MR; and c) the addition of the candidate
file revision to the MR keeps the MR at most 6,,,,, seconds long.

Most MRs take only few seconds to complete, but some tend to be rather longer.
There are several factors that affect the duration of an MR. First, the size and
number of files that compose the MR; second, the bandwidth available between the
developer’s computer and the CVS server (a slow link will slow down the time
required to do the commit); and third, the load of the CVS server. We tested the
extraction for different parameters of 7, and 6, in two different CVS repos-

@ Springer

Empir Software Eng (2006) 11: 369-393 371

// front(List) removes the front of the list
// top(List) and last(List)
// query the corresponding elements of the list
// Initialize set of all MRs to empty
MRS =10
for each A in Authors do
List = Revisions by A ordered by date
do
MR.list = {front(List)}
MR.sTime = time(M R.list1)
while first(List).time — M R.sTime < dmaz/
first(List).time—
last(M R.list).time < Tmaz A
first(List).log = last(M R.list).logN
first(List).file ¢ MR.list do
queue(MR.list, front(List))
od
MRS = MRS {MR}
until List # 0
od

Fig. 1 Algorithm for the recovery of MRs

itories (Apache 1.2 and Evolution). The results are shown in Figs. 2 and 3. In Fig. 2
Tmax Was varied from 1 to 600 s, while 6,,,, was fixed at 600 s. In Fig. 3 8,,,,x Was
varied from 1 to 600 s, while 7,,,,, Was fixed at 45 s. The vertical axis is the proportion
of MRs rebuilt for a particular parameter value. For example, in Fig. 2 the number
of MRs varies by less than 1% when 7;,,,, > 25, and the number of MRs increases as
much as 20% when 7,4y = 1. 6,4y has a different effect: when it is equal to 1 s, MRs
increase by almost 40%, but their number remains almost constant for both projects
for 6,4 > 5S0.

These graphs suggest that 6,,, = co and 7, = oo will yield useful values. We
have found, however, that the algorithm depends greatly on how descriptive the logs
of CVS commits are. If all the comments are empty then it will be more difficult to
distinguish between two different MRs that are submitted by the same author within
few minutes of each other. The average length of comments is 135 and 337 char-
acters for Apache 1.2 and Evolution, respectively. In our experiments we used 7j,,,x =
45s and 6,,,c = 600s for the extraction of MRs.

1.25 an T ——— r ———
Apache 1.2, detected MRs for 6 =600 ——
Evolution, detected MRs for = 600 ------- E

-
(V)
!

Variation in detected MRs

1 10 100 1000
T (max distance between revisions in MR) in seconds, log scale

Fig. 2 Variability in the number of recovered MRs when 7,4, is varied

@ Springer

372 Empir Software Eng (2006) 11: 369-393

o T T

S 135 Apache 1.2, detected MRs for © = 45 4
T 13k Evolution, detected MRs fort =45 ------- i
8 125 —
s 12t i
E 1.15 | -
S 11F -
2 105 | -
o . N | . M
> 1

1 10 100 1000

d (max length of MR) in seconds, log scale

Fig. 3 Variability in the number of recovered MRs when 6,4, is varied

MRs record all types of activity: changes to the source code, documentation,
internationalization, etc. We decided to concentrate our attention in the evolution
of the code base, hence, we looked into MRs that included source code files, which
we call codeMRs. A codeMR is an MR that contains at least one source code file
revision. For this research, we used the CVS repositories of the following projects:

* Apache. A Web server. Its development has been divided into several CVS
repositories, one for each major version. We used the repositories of Apache 1.2
and Apache 1.3.

* Evolution. A mail client for Unix similar in functionality to Microsoft Outlook.

* GNU gcc. The GNU multi-platform, multi-language compiler.

* Mozilla. A Web browser.

* PostgreSQL. A relational database.

All these projects are open source, stable, several years old, and have a large user
base. Table 1 shows some statistics of each of them. We obtained copies of the CVS
repositories of Apache and Evolution (except its internationalization data), and the
rest were remotely mined using the CVS protocol. The resulting MRs were loaded
into a relational database. A more detailed discussion of the extraction stage,
including the schema of this database is presented in (German, 2004b).

For four projects (Apache 1.2, Apache 1.3, Evolution and PostgreSQL) we
proceeded to analyze their history in more detail. First, we instantiated every revision
of every source code file and its corresponding “clean” version. A clean version of a
source code file is computed using the following algorithm:

1. Remove all the comments and empty lines
2. Reformat the resulting source code

Table 1 Statistics of the projects used in this paper

Project First date Last date Files Revisions ~ MRs codeMRs Authors
Apache 1.2 1996-01-14 1999-08-30 428 4,646 1,839 1,073 18
Apache 1.3 1996-01-14 2004-11-14 1,293 20,794 8,021 3,983 60
PostgreSQL ~ 1996-07-06 2004-09-18 5,579 91,740 20,330 11,023 27
Evolution 1998-01-12 2003-11-18 5,127 81,874 18,216 14,032 148
Mozilla 1998-03-28 2003-10-04 35,229 452,738 117,554 85,618 528
GNU gcc 1997-08-11 2004-02-18 24,463 485,930 58,639 214

@ Springer

Empir Software Eng (2006) 11: 369-393 373

If the clean version of a revision was identical to the clean version of its preceding
revision then the file had changed only in its comments or its white space and its
source code was not changed.

3 Analysis of Source Code Modification Records

What do source code modification records (codeMRs) look like? We started with the
assumption that there exist different types of codeMRs, which reflect the type of
activity that the developer is completing. Based on our observations we have iden-
tified six types of codeMRs:

* Functionality improvement, e.g., implementation of new features.

* Defect-fixing.

e Architectural evolution and refactoring, e.g., a major change in APIs or the
reorganization of the code base.

* Relocating code, e.g., a file is placed in a new directory, or a function is moved
from one file to another.

* Documentation. Since we are concentrating only on source code, this means
changes to the comments within files.

* Branch-merging, e.g., code is merged from a branch or into a branch. Branches
are used for different purposes in software development: they might record
experimental code that cannot be committed immediately to the main
development branch of the system (the HEAD). Some branches are never
“merged” to the HEAD. Sometimes branches record alternate versions of the
system that evolve independently of the HEAD of the system.

This list might not be comprehensive, but we believe these are the most common
types of changes present in MRs. Furthermore, these types are not mutually
exclusive: for example, an MR can include files with major changes in their
documentation and those files might be moved to a different location at the same
time. Documentation and architectural evolution MRs tend to include a large
number of files. For example, we have discovered MRs composed of several
hundred files in which each file has only been modified in its comments (in one
instance the license of the product changed; in another, the name of the company
changed). Architectural changes might involve moving large amounts of code from
one place to another, or changing APIs of important components that would require
any file using that function to be changed.

The main problem we face is: can we classify automatically codeMRs into sets that
are somehow similar to the previous categories? We were able to identify heuristics to
classify codeMRs into the following three different types:

* bugzillaMRs are codeMRs that correspond to an explicit defect fix as recorded by
Bugzilla. Usually, if the MR fixes a bug, the developer will record the defect
number in the log of the MR. Unfortunately, of the projects analyzed herein, only
Evolution and Apache have a Bugzilla site. In both projects Bugzilla defect
numbers are usually preceded by a # or the word bug. If an MR log matches one
of the following regular expressions, it is considered to be a bugzillaMR:

— bugs?[\n\t]+[0-9]+,
- #[\n\t]*[0-9]+

@ Springer

374 Empir Software Eng (2006) 11: 369-393

0.7 T T

Mozilla
o Evolution ---+-----
0.6 [Postgresq| -
i gcc
Apache 1.2 ---&--
Apache 1.3 --=--

0.5

Proportion of MRs

1 2 4 8 16 32
Number of files (log scale)

Fig. 4 Proportion of MRs with a given number of files for various projects. Most MRs are composed
of one or two files

* fixDefectMRs. We have found that the developers of mature projects record a
good explanation of the change in the CVS commit log. From our observations
two words are very useful to detect if a change is a defect fix: bug and fix
(including their derivatives: bugs, fixed and fixes). A codeMR that contains any of
these words is marked as a fixDefectMR.

* commentMRs are codeMRs in which every one of its source code files was modified
only in its comments. For a given MR, if every one of its clean file revisions was
identical to the its previous clean revision, then the MR was labeled as a
commentMR. commentMRs do not change the functionality of the system.

How do these categories relate to the ones previously presented? bugzillaMRs and
fixDefectMRs are subsets of the defect-fixing type of MRs, while commentMRs are a
subset of the documentation type. commentMRs are relatively uncommon: in
Evolution less than 3% of codeMRs are commentMRs while in Apache 1.2 the
proportion is 4%, and 5% for Apache 1.3. fixDefectMRs are more common (they are
approximately 25% of all code MRs). bugzillaMRs varied the most: Apache 1.2 had
4% of its codeMRs labeled as a bugzillaMR, while Apache 1.3 had 2% and Evolution
11%. Another important issue is that the union of these three categories corresponds
to a subset of all codeMRs. According to the projects we analyzed, these three
categories cover only between 30 to 40% of all the codeMRs. If we exclude
commentMRs, these heuristics only discover MRs that fix defects. The rest of the
codeMRs will correspond to functionality improvements, architectural evolution and
refactoring, code relocation, etc., and those defect-fixing MRs that are not detected
by these heuristics.

How good is the recall of these classification heuristics? In the detection of
commentMRs we use the Unix indent program to reformat source code (indent was
designed for C). Based on our observations this heuristic performs well, but we have
not conducted a formal evaluation of its accuracy.

To evaluate the precision of our heuristics for detecting bugzillaMRs and
fixDefectMRs we randomly sampled 100 detected bugzillaMRs from Evolution, and

@ Springer

Empir Software Eng (2006) 11: 369-393 375

0.8 : : -
Mozilla
@ Evolution -
0.7 N Postgresq| - i
' gcc

Apache 1.2 -]
Apache 1.3 --=---

0.6 A%
05
0.4

0.3

Proportion of codeMRs

0.2

0.1

1 2 4 8 16 32
Number of source code files (log scale)

Fig. 5 Proportion of codeMRs with a given number of source code files for various projects

100 detected fixDefectMRs from Apachel.2. Ninety-nine bugzillaMRs were correctly
classified, and all of the fixDefectMR appeared to have been correctly classified (in the
opinion of the author—determining what is a “fix” is very subjective). Should all
bugzillaMRs be classified as fixDefectMRs? We would expect the answer to be yes,
were Bugzilla intended to track only bug fixes. We have found, however, that a very
small number of bugzillaMRs are the implementation of new features (they fall into
the “wish” category in Bugzilla). For Evolution only 12% of bugzillaMRs were not
classified as fixDefectMRs. An example of a bugzillaMR that was not classified as a
fixDefectMRs has the log entry: ‘Add accelerators. [#10068].” Is adding accelerators
(an accelerator is a predefined key that triggers a menu action) a defect fix? Some
could argue that it is a defect fix, while others can argue that it is a new feature.
Without clear specifications (which most open source projects lack) there is no clear
answer to this question.

3.1 Number of Files in MRs

We looked in detail into the number of files in MRs. We discovered that in all the
projects most MRs tend to contain very few files. Figure 4 shows the distribution of
the number of files in MRs for the projects Apache 1.2, Apache 1.3, Evolution, GNU
gce, PostgreSQL and Mozilla.

The plot only shows only up to 32 files. There are very few larger MRs (for
example, in Evolution we detected an MR which included 650 files, and in Mozilla one
that included 5,838 files). Note that two distinctly different curves are obtained: one
comprising the results for Apache 1.2 and 1.3, PostgreSQL and Mozilla; the other
including the results for Evolution and GNU gcc. This effect was interesting enough to
explore further. We discovered that the use of ChangeLog files (the file ChangeLog is
part of the GNU standard and includes an explanation of what has been changed by
who and when) accounted for this sharp difference. Evolution and GNU gcc use
ChangelLogs, and almost every MR that includes two or more files includes also a
modification to a ChangeLog file. Mozilla and PostgreSQL do not use them. When

@ Springer

376 Empir Software Eng (2006) 11: 369-393

Table 2 Average and standard deviation in the number of source code files in codeMRs for various
projects

Project codeMRs Avg. Std. dev.
Apache 1.2 1,073 2.19 5.32
Apache 1.3 3,983 2.45 7.07
PostgreSQL 11,023 5.21 27.11
Evolution 14,032 341 10.08
Mozilla 117,554 3.00 13.72

ChangeLogs are not taken into account the curves of all the projects look remarkably
similar.

Given that our interest was centered on software development, we proceeded to
count only source code files in codeMRs. Figure 5 shows the accumulated distribution
of the number of source code files in codeMRs, and Table 2 shows the average and the
standard deviation for these projects. The distributions are very similar; their average
is relatively small (Apache 1.2 has the smallest, and PostgreSQL the largest), but their
standard deviation is less uniform (from 5.32 in Apache to 27.11 in PostgreSQL). One
explanation for this effect is that PostgreSQL developers tend to commit MRs that
implement more complex functionality, while the Apache developers tend to be more
conservative in their changes. Further research is needed to explain this behavior.

We inspected the codeMRs of Evolution. Figure 6 shows the distribution of the size
of the three types of detected MRs (including the total number of codeMRs for
reference purposes) and Table 3 shows their main statistics. We can make several
observations about them: most commentMRs are composed of changes to one file
(80% have one file, which means its changes are not documented in the ChangeLog) or
many (5% of commentMRs contain at least 16 files, and the largest has 256). One can
argue that developers who comment a source code file do not feel the need to add a
comment to the ChangeLog explaining what they have done. Large commentMRs tend
to be changes to the comment at the top of each file, which usually contains a copyright

09
0.8

0.7
0.6
0.5
0.4 r
03 /
02 /i fixDefectMRs ---+--- -
bUgMRS -+

0.1 7 commentMRs -~
0 3 ‘ ‘ ‘ codeMRs

1 2 4 8 16 32 64 128 256
Number of files (log scale)

Proportion of MRs (accum)

Fig. 6 Distribution of the total number of files (including non-source code) in different types of
MRs for Evolution

@ Springer

Empir Software Eng (2006) 11: 369-393 377

Table 3 MR statistics for evolution

Type Total Avg. size Std. dev.
All MRs 18,216 4.50 13.64
codeMRs 14,032 3.41 10.08
bugzillaMRs 1,645 1.95 225
fixDefectMRs 3,746 3.70 10.08
commentMRs 391 4.85 20.62

The size is the number of source code files in the MR.

clause. We found that the commentMRs with the largest numbers of files corresponded
to a change in the copyright (either from one copyright holder to another, or updating
its year).

It is unusual for fixDefectMRs and bugzillaMRs to modify just one file. We found
that 95% of bugzillaMRs and 90% of fixDefectMRs included a modification to a
ChangeLog that documented the change. As depicted in Table 3, bugzillaMRs had the
smallest average size (3.07 files) and the smallest standard deviation (2.54).

We can conclude that, for Evolution, the MRs that are labeled as bug fixes contain
few files, and MRs that only modify comments in the source code are likely to contain
either just one file or a large number of files.

Do these observations extend to other projects? We analyzed the MRs of Apache
1.3. Table 4 shows the statistics of the different types of MRs of the project. Figure 7
shows the corresponding plot for the project. Considering that Apache does not use
ChangelLogs, the average size of a codeMR is very similar to the average size of a
codeMR in Evolution. As in Evolution, most of Apache’s commentMRs have only one
file, but many of these are very large. On the other hand, bugzillaMRs in Apache are
contain more files than in Evolution. Is this because bugzillaMRs are more complex to
fix in Apache than in Evolution? Is it because only more difficult defects are recorded
in Bugzilla for Apache, or because Apache developers only record defect numbers in
more complex defect fixes? Further research is needed to answer these questions.

3.2 Modification Coupling of Files in codeMRs

In Fischer et al. (2003a), Fisher and Gall argued that historical modification logs can be
used to detect a coupling relationship between two files: if two files are modified at the
same time, then these two files are related. We decided to analyze when and how the
same two files were modified together. For this purpose we defined three metrics:

e Frequency of modification. The frequency of modification of a file A
Frequency(A) is the number of MRs in which the file A is modified. For a pair

Table 4 MR statistics for Apache 1.3

Type Total Avg. size Std. dev.
All MRs 8,021 2.59 7.30
codeMRs 3,983 245 7.07
bugzillaMRs 152 247 5.27
fixDefectMRs 1,031 1.84 5.51
commentMRs 209 4.08 12.04

@ Springer

378 Empir Software Eng (2006) 11: 369-393

1
0.9

T o08f

3 /

8 077

e -

s 0.6 -

© 05t

< B

S

5 04/

3

e 0% fixDefectMRs ---»---

bUgMRs -reeeeeee

02 commentMRs ----%----
0.1 ! ‘ s ‘ _codeMRs
T 2 4 8 16 32 64 128 256

Number of files (log scale)

Fig. 7 Distribution of the total number of files (including non-source code) in different types of
MRs for Apache 1.3

of files A, B, Frequency(A, B) corresponds to the number of MRs that include A
and B.

* Modification coupling. The modification coupling between two files A and B is
the likelihood that if file A is modified, then file B is also modified. Formally, we
define the modification coupling between two files A and B as:

M(A,B) Frequency(A, B)
Frequency(A)
M is, therefore, non-reflexive.

* Modification neighbors. The modification neighbors of file A are all the files that
have been modified at the same time as A. Formally, if R(A) is the set of all MRs
in which A has been modified, its modification neighbors Neighbors(A) is the
union of the files modified in the MRs in R(A).

If two files have very high modification coupling one would expect that they are
related somehow. This relationship can be very explicit (if one changes the
prototype of a function, one has to change every function call), but sometimes it
can be more subtle (for example, the format of a configuration file has changed, and
the function that reads the file and the one that writes the file have to be updated,
even though there is no explicit function call between both).

The size of the modification neighbors can be used as an indicator of how related
two files might be. Some files will tend to be modified with many others. Not
surprisingly, in Evolution ChangeLogs are the files with the largest set of modification
neighbors. We found that the source code file with the largest set of modification
neighbors in Evolution was mail/mail/callbacks.c (it was also the most frequently
modified source code file); this contains the main execution loop of the application,
and is responsible, as its name implies, for responding to events and triggering the
corresponding callbacks. Whenever a new callback is created this file has to be
updated (usually because a new feature has been added to the system).

@ Springer

Empir Software Eng (2006) 11: 369-393 379

As it was explained earlier, commentMRs do not contain changes to source code.
The relationship between files that are modified together in a commentMR is not very
useful. If two files are modified together in a commentMR, this relationship is not as
important as when they are modified, for example, during a bugzillaMR. For instance,
if an MR modified the copyright of 5,000 files, are they truly related except by the fact
that all shared a copyright notice? Branch-merging MRs pose a similar problem: they
contain several logical changes in one MR, and, in our opinion, dilute the
modification coupling relationship of their component files, as they incorrectly (for
the purpose of modification coupling) relate files that belong to two or more smaller
operations.

Because we wanted to focus on MRs that showed a higher level of modification
coupling between the files that composed them, we chose to ignore MRs that
contained a large number of files or MRs that we knew contained files that were
only weakly related. As a result we selected a subset of codeMRs based upon the
following rules:

1. Select all the codeMRs that contain at least two source code files.

2. Eliminate commentMRs.

3. Eliminate codeMRs in branches. Branches in CVS pose difficult problems for
researchers (Fischer et al., 2003b). One of the reasons is that it is not explicit when
code from the main trunk of the development tree (the HEAD) is committed to
the branch, or when code from the branch is committed back into the HEAD. If
branches are not properly processed, a change to a file might be taken into
account twice: once when it goes into the branch, and once when it goes back into
the HEAD. Furthermore, branch-merging into the HEAD will likely include
many files (they are all related, but we are interested in the finer-grained
relationships of each MR that was committed to the branch, rather than the
entire one). Because branch-merging detection is expensive and error-prone we
decided not to take into consideration any revision committed to a branch.

4. Eliminate codeMRs that contain a relatively large number of file revisions. This
step attempts to remove from our analysis MRs that are more likely to be
architectural, or branch-merging codeMRs (we kept codeMRs with at most 20
files).

5. Eliminate codeMRs that contain files that were deleted in that MR. Unfortu-
nately CVS does not support moving files. The user has to delete and create a new
file in a new location. By eliminating these MRs we expected to avoid some code
reorganization MRs.

6. Eliminate codeMRs that include the first version of a file. It is frequent that the
first revision of the file is the result of importing a group of files into the project,
or the result of moving a file (see previous item). We decided to avoid any MR
that included a first version of a file.

7. Add all bugzillaMRs (if the project maintains a Bugzilla database), because we
have explicit knowledge that these files are related to fixing a defect. One risk of
adding all bugzillaMRs is that some of them might complete more than one task.

It is possible that the modification neighbors of a file change as the project evolves.
To facilitate our analysis and to avoid trends early in the development of the product,
we selected only MRs from one year (2002 for Evolution and PostgreSQL, and 1998 for
Apache 1.3—1998 was one of its most active years). Table 5 shows statistics of the three
projects. It only includes codeMRs with at least two source code files.

@ Springer

380 Empir Software Eng (2006) 11: 369-393

Table 5 Statistics of the working set of three projects (except for all MRs, each MR contains at least
two source code files)

Project Year All MRs codeMRs HEAD codeMRs Working set
Evolution 2002 2,707 1,049 945 823
Apache 1.3 1998 2,301 1,012 327 278
PostgreSQL 2002 2,863 669 644 504

We believe that the modification coupling depends heavily on the programming
language of choice. The projects we analyzed were written in C and C++. In C/C++
prototypes, class definitions and constants are usually placed in a .h file. If a prototype
in the .h file is changed, one would expect that the corresponding .c file would be
changed accordingly. We were, therefore, interested to verify the following hypothesis:

* For most .h files and their corresponding .c file (file.h and file.c),
M (file.h, file.c) will tend to be close to one (i.e., if file.h is modified, file.c is
almost always modified).

We proceeded to compute the modification coupling for all .h files and their
corresponding .c file. Figure 8 shows the distribution of the frequency of
modification couplings for every pair of candidate files. The horizontal axis
corresponds to all the possible modification coupling values, while the vertical axis is
the proportion of .h files with less or equal that modification coupling. This plot
clearly shows that for Evolution and PostgreSQL most .h files are modified with their
corresponding . c file. For example, in Evolution 15% of .h files have less or equal
to 0.95 modification coupling with their corresponding .c files (hence 85% have
modification coupling > 0.95). PostgreSQL has a similar distribution, with 75% of all
.h files with > 0.95 modification coupling. In Apache 1.3 this effect is less
pronounced: 50% of .h files have a modification coupling < 0.5. We found that in
most cases, these changes are to constants and macros that do not require changes to
the corresponding .c file.

Apache 1.3 (1998) ——
09 r Postgresgl (2002) ----------

Evolution (2002) ---+--- !
0.8]
0.7 r /]
0.6 /]
05 A
04]
0.3 r]

Proportion of h files (accum)

01 02 03 04 05 06 07 08 09 1
Modification Coupling

Fig. 8 Proportion of .h files with a given modification coupling with their corresponding .c file

@ Springer

Empir Software Eng (2006) 11: 369-393 381

Other important questions are whether files are changed usually in groups, and
whether changes to files tend to be localized to the same module (we define a
module as each of the main directories of the source code). We wanted to verify the
following hypotheses:

* A file is usually modified with the same files, and
* Most MRs are composed of files that belong to the same module.

To test these hypotheses we created a coupling graph. A coupling graph is an
undirected graph that gives a visual overview of how files are modified together
during a given period. Each node of a modification graph corresponds to a file that
has been modified. If two files, A and B have been modified together in the same
MR, then an arc is created between them. In the visual representation of the graph
the arc’s width is equal to Frequency(A, B) (the number of times they have been
modified together). To improve the layout of the graph nodes are coloured and
clustered according to the module they belong to.

The graph for the entire working set was too large and busy to include here.
Instead we decided to concentrate on smaller periods. There were two interesting
periods around a major release: for Evolution it was 2002/11/07, when version 1.2.0
was released (a major stable release). The month of October 2002 was spent making
sure that there were no errors in the version, while most of November was spent
adding features for the next new unstable release. We will refer to October 2002 as the
Maintenance period, and to November 2002 as the Improvement period. Figure 9
shows the coupling graph for the maintenance period and Fig. 10 shows the coupling
graph for the improvement period.

We can make the following observations:

* The maintenance period has significantly fewer MRs than the improvement
period. Unfortunately we do not know much time developers spend during each
period. We can only speculate that they spend similar times during both periods,
and, as expected, the number of MR resulting from bug fixing is significantly
smaller than adding new functionality to the system.

e The graphs tend to be composed of small disconnected subgraphs, or clusters of
nodes interconnected by few edges. This suggests that a file is modified with few
other files. There are, however, files that have a large number of modification
neighbors. It is also easy to spot files that are frequently modified together (the
thicker the line, the more frequently they have been changed together). During
the maintenance period most files were modified together only once, but during
the improvement period several ones were modified together multiple times.
During the maintenance period the average number of modifications per file was
1.18, and some files were modified at most three times. For the improvement
period the average was 1.98 the maximum frequency was 9.

* The modularization of the project has a profound impact in the disjointedness of
the different subgraphs. During the maintenance period there is no MR that
spans two modules, and in the improvement period only two modules are
interconnected by a total of three files. It is believed that the success of an open
source project depends on the ability of its maintainers to divide it into small
parts in which contributors can work with minimal communication between each
other and with minimal impact on the work of others (Lerner and Triole, 2000).
This division of work seems to be based on the modularization of the project.

@ Springer

382 Empir Software Eng (2006) 11: 369-393

i

./I

T
=

amel |[[calendar |

addressbook

widgets

"
BB

Fig. 9 Modification coupling graph for Maintenance period of Evolution. Squares represent files and
two files are connected if they were modified together

3.3 Authorship

We were also interested in understanding how authors are related to modification
coupling. We wanted to answer the following questions:

* How many people tend to modify a given file?

* How many authors contribute to a given module?

* Can we infer some type of social network from the modification patterns of a
software project?

@ Springer

Empir Software Eng (2006) 11: 369-393 383

composer
= &) f
H =

Fig. 10 Modification coupling graph for Improvement period for Evolution

We proceed to define an authorship graph. In an authorship graph there were two
types of nodes: files, and authors. There exists a node for each file that has been modified,
and one per each author who has submitted an MR. An edge is created between a file F
and an author A if A had modified the file F. In the visual representation of the graph
files are depicted as squares and authors as ovals. File nodes are also clustered and
coloured according to the module they belong to. Finally, the width of an arc is
proportional to the number of times an author has modified a given file. Figure 11
shows the authorship graph for the maintenance period, while Fig. 12 corresponds to
the improvement period. We can make the following observations about these graphs:

* Most files are modified (“owned”) by one individual. The graph is very helpful in
identifying who this individual is.

* Most individuals tend to concentrate their work in one or two modules.

* The files in some modules are split into few clusters where each cluster is
primarily modified by one author.

» The files that are modified by more than one author might be “interfaces” between
two different parts of the system. They might contain code that connects the
functionality of one module with the other. Further research is needed to very this
assertion.

@ Springer

384 Empir Software Eng (2006) 11: 369-393

zucchi [43] 0] [=]
[]
[=2]
“
57
_u - —m "
kmaraas -]

ipr

Fig. 11 Authorship graph during Maintenance period of Evolution. Ovals represent authors that are
connected to the files they have modified (represented as squares)

In order to understand the effect of modularization in these graphs, the files of
each module were collapsed into a single node. If an author modified a file in that
module then an arc was created. The result can be seen in Fig. 13. Authors tend to
modify code in few modules (some in one only). The information of this graph can
be useful for developers; for example, it can help them by making them aware of
who are the people who tend to work in a given part of the system.

We proceeded to do a similar analysis for PostgreSQL around the release of
version 7.2 (2002/02/04). Figures 14 and 15 show the modification coupling graphs
for the months before and after the release, and Fig. 16 the authorship graph for the
Maintenance period. The results are similar to those in Evolution: the maintenance
period has significantly less MRs than the improvement period; also, files tend to be
modified in clusters and changes tend to be localized in one directory. There is two
modules that are highly connected in these two graphs (modules in the center and the

@ Springer

Empir Software Eng (2006) 11: 369-393 385

[widgets |

cOMmposer

Fig. 12 Authorship graph during Improvement period

bottom left in 14, and the two modules in the center of 15). One of the them is the
include module, where the .h files reside. It is interesting to see that in PostgreSQL
all include files are located in their own module, while in Evolution they are within the
module of their corresponding .c files.

4 Discussion

Our original goal was to classify automatically codeMRs based on the type of activity
that they reflect: functional improvement, defect fixing, architectural Evolution and
refactoring, documentation, etc. One important question is how our classification of
codeMRs into bugzillaMRs, commentMRs, and fixDefectMRs relate to these categories
of activity. commentMRs are clearly of the documentation type, while bugzillaMRs
and fixDefectMRs are most likely defect-fixing activities. An important issue is that we
have classified only a fraction of the original codeMRs: the sum of bugzillaMRs,

@ Springer

386 Empir Software Eng (2006) 11: 369-393

‘ederico

ipr rodrigo
toshok

Fig. 13 Collapsed authorship graph for Improvement period. A triangle represents a module and an
oval represents an author. If an author has modified at least one file in a module they are connected

]
“

include

Fig. 14 Modification coupling graph for Maintenance period of PostgreSQL
@ Springer

Empir Software Eng (2006) 11: 369-393 387

I
W2,
IV
2 :=
R interfaces
"\I‘ QX 70
\'\‘,’%/z\q\\"'tg include]

Fig. 15 Modification coupling graph for Improvement period of PostgreSQL

commentMRs and fixDefectMRs corresponds to approximately 1/3 of all codeMRs.
The rest of the codeMRs comprises a large set including functional improvements,
architectural Evolution and refactoring, and codeMRs missed by our heuristics (we will
refer to this set as otherMRs). Further work is needed to determine what otherMRs
look like and if they can be automatically analyzed and divided into different subsets.

As we mentioned in Section 3, some codeMRs involve more than one activity, and
we do not know how prevalent these are, although we suspect that their proportion
will change from project to project, according to the habits of their developers. For
example, some fixDefectMRs might not be just a defect fix, and might include new
functionality. Also, using the heuristics described in this paper, documentation MRs
are not detected as commentMRs if they also modified some source code. We are also
unable to detect a defect-fixing codeMR that was not properly tagged under Bugzilla
or does not include any of the keywords “bug” or “fix.”

Despite these limitations, even if our heuristics are only able to find subsets of
their corresponding types of MRs, their high level of precision makes them useful.
For instance, we plan to use machine learning to find defect-fixing codeMRs that
currently are not being detected. We can use the bugzillaMRs and fixDefectMRs as a
training set, and then attempt to discover other similar changes in the history of a
project. An added advantage of this approach is that bugzillaMRs and fixDefectMRs
are likely to show a stronger interrelation between their component entities (files,
classes, methods or functions) than the average codeMR. Several techniques use these

@ Springer

388 Empir Software Eng (2006) 11: 369-393

] []

include

thomas

Fig. 16 Authorship graph during Maintenance period for PostgreSQL

interrelations for the purpose of predicting change or failures (Zimmermann et al.,
2005; Ying et al., 2005; Hassan and Holt, 2004; Girba et al., 2004); these methods
treat all codeMRs as equivalent. We speculate that using only fixDefectMRs and
bugzillaMRs will improve the recall and precision of such methods (we plan to test this
assertion in our future research).

The modification coupling and the authorship graphs provide useful and
interesting visualizations of the files being modified and the authors of the
modifications. In particular, the authorship graph can be used to discover
“developer” interactions based on the assumption that if two developers work on
the same file, they need to communicate (formally or informally). This graph also
depicts the importance of modularization, since a well modularized product might
reduce the required communication between developers.

One issue that must be addressed is how applicable to other projects are the
observations made in this paper. Some of our observations appear to be general: the
distribution of the number of files in MRs is very similar across different projects,
regardless of their application domain; most MRs tend to contain very few files (the
majority contain only one); in projects that use them, Changel.ogs are usually modi-
fied in all codeMRs, even if the change involves only one source code file. Another
common observation is that commentMRs tend to be either very small (they modify one
file) or very large (some modify hundreds and sometimes thousands of files).

@ Springer

Empir Software Eng (2006) 11: 369-393 389

There are, however, cases in which our observations are contradictory from one
project to another. For example, we observed that in Evolution the smallest MRs are
the bugzillaMRs, while in Apache these are the fixDefectMRs. If we were to use
machine learning to automatically classify MRs, this might suggest that it is more
important to use a training set from the project that is to be analyzed than using a
generic training set derived from other projects.

One problem we faced in our classification was our inability to asses the amount of
change in a given MR. Do different types of MRs change the source code in
quantifiably different ways? For example, it might be possible that bugzillaMRs tend
to modify very few functions, and they almost never change an API. Unfortunately this
type of analysis requires more expensive, and language dependent, semantic analysis.
The answer is left for future research. If we are able to understand better what different
types of changes look like, we might be able to use this information for multiple
purposes. For example, it could be used for visualization (the user can easily select
different types of changes; for example he or she might be interested in architectural
changes and not in defect fixes). Another advantage is that we could know which
changes are more important for the analysis being performed (e.g., if we can detect
which types of changes induce more bugs, we could better predict, for all new changes,
which would be more likely to fail).

We have used the visualizations presented in this paper to understand how
different open source projects have evolved, the development practices they have
used, and how their developers are organized. However these visualizations still need
to be evaluated by developers.

Finally, any analysis of the MRs of a project must be evaluated in the context of
the development process that a project follows. This can be used to explain the
disparities between two projects. For example, Apache MRs might be smaller
because the project is very conservative and tends to make changes in very small, but
well-tested increments. Also, some projects have more rigorous code submission
policies. In Evolution, for example, any developer can commit any code without
approval, while in Apache there is a formal procedure to determine what is added to
the product (and what is not). This could explain why we detected a smaller
proportion of bugzillaMRs in Apache than any other project.

5 Future Work

The historical logs of software projects are a wealth of data that can be used to
further our understanding on how software changes. Similar studies like the one
described here are needed, looking at different software products, in order to verify
if some of the observations made herein extend to these projects. In particular,
studies that involve other programming languages (such as Java) are needed.

Semantic analysis of MRs is needed to measure the amount of change performed.
It is necessary to know what parts of the code change, and how (not only that the
file has changed). In order to better classify MRs it is necessary to understand the
“amount,” and “type” of change that the MR performs. In other words, we need
metrics that measure MRs.

The visualization of these data is also an interesting area of research. We need to
improve our understanding of the needs of different types of users (developers,

@ Springer

390 Empir Software Eng (2006) 11: 369-393

managers and researchers) and then create visualizations that address their needs.
And they should be evaluated to determine if they are useful or not.

One area we are particular interested in is the animation of the authorship and
modification coupling graphs, with the intent of showing how the file’s and author’s
interactions evolve through time.

6 Previous and Related Work

Mockus et al., (2002) analyzed Mozilla and Apache in an attempt to quantify aspects
of developer participation and interaction, defect density and problem resolution
intervals. Fisher and Gall have described a CVS fact extractor (Fischer et al., 2003b),
and discussed the main challenges of creating a database of CVS historical data and
then use this database to visualize the interrelationships between files in a project
(Fisher and Gall, 2003). Fischer et al., (2003a) analyzed the modification records and
describe different types of logical coupling among the files included in the MR. In
German and Mockus (2003), we proposed methods to extract historical information
(version control, defect tracking systems, ChangelLogs, mailings lists) to help in the
empirical investigation of open source projects.

Several tools have been created to explore the historical data stored in version
control repositories. Xia is a plugin for Eclipse that provides some visualization for
CVS repositories (Wu et al., 2004b). Liu and Stroulia have developed JReflex, a
plug-in for Eclipse for instructors of software engineering courses (Liu and Stroulia,
2003; Liu et al., 2004). It is designed to compare the differences in development styles
in different teams, who does what, who works on what part of the project, etc. JReflex
is intended to be a management oriented tool for browsing the CVS historical data.

Zimmermann and Weissgerber, (2004) described a method for the recreation of
MRs from CVS logs similar to the one described in this paper (this paper was
published at the same time as (German, 2004b) where we first described our
algorithm). Their paper, however, does not include an analyses of the impact of
varying the different parameters of the algorithm. In German (2004a,c), we
demonstrated how version control logs can be used to understand how software is
developed.

Historical information stored in version control systems has been used to assist in
finding defects (Williams and Hollingsworth, 2005), estimated what files are more
prone to defects (Ostrand and Weyuker, 2004; Ostrand et al., 2005; Graves et al.,
2000), guide developers who have to complete tasks that are similar to one that was
already completed (Zimmermann et al., 2005; Ying et al., 2005), predict what files
are modified together (Hassan and Holt, 2004), or predict which files are to be
modified in the near future (Girba et al., 2004). Hassan and Holt (2003) studied the
complexity of software systems based on their source code history.

Few work has been done regarding the analysis of fine-grained changes as
recorded by version control systems. Purushothaman and Perry, (2005) analyzed the
changes made to a large proprietary system trying to understand what types of
modification records (they called them modification requests) are more prone to
introduce defects; the projects they analyzed included extensive documentation
explaining the type of change, its rational and how it had been completed; unfor-
tunately many projects do not record all this information.

@ Springer

Empir Software Eng (2006) 11: 369-393 391

With respect to visualizations, in Storey et al., (2005) we provided a comprehen-
sive survey of visualization techniques used for historical information, including
version control history. Of particular relevance to this research are the MDS-views
that Fisher and Gall proposed (Fisher and Gall, 2003; Gall et al., 2003): they are
graphs that show the dependencies between different parts of a system based on
how frequently they were modified together. In MDS-views, nodes represent the
different parts of the system (classes or files) and two nodes are connected if they
are modified together in an MR that fixes a defect report. The distance between two
nodes represents the “dissimilarity” between them. Like our research, they used the
defect database (Bugzilla) in combination with the version control data. Collberg et
al. proposed a system called GEVOL to explore the Evolution of a system using its
CVS repository. Their graphs depict control flow, inheritance and control flow. In
these graphs colour is used to distinguish the different author (Collberg et al., 2003).
Eick et al., (2002) used historical information from proprietary systems to propose
several visualizations; one of them, called “relationship between files” is very similar
to our modification coupling graph. Their graph is not clustered by module and uses
colour to depict frequency of modification (the modification coupling graph uses the
thickness of the arc to depict this data, and colour to depict the module to which the
file belongs).

Spectrographs (Wu et al., 2004a) and Evolution matrices (Lanza, 2001) are two
dimensional grids that use historical information. One axis represents time and the other
represents a part of the system (a class or a file, for example). If a part of the system is
modified in a given time period, then the grid is marked accordingly. The basic idea of
these visualizations is that they provide a quick overview of what parts of the system
evolve at the same time.

7 Summary

In this study we developed an algorithm to reconstruct modification records (MRs)
from CVS logs. We then analyzed the characteristics of these MRs, and proposed
three classifications that can be done automatically: commentMRs (those MRs that
only modify source code), bugzillaMRs (those MRs that correspond to an explicit defect
fix as recorded by Bugzilla), and fixDefectMRs (MRs that include the word fix or bug
and that seem to correspond to a defect fix). The characteristics of these subsets of MRs
were compared across several projects. An important aspect of this study reported in
this paper is our attempt to visualize the interrelations between authors and files as
dictated by MRs. Two graphs were proposed: modification coupling of files (showing
files that are modified together in the same MR during a given period) and authorship
(showing, for a given period, authors and the files that they modified). We argued that
these graphs can be used for several purposes; for example, to understand explicit and
hidden relationships between files, to know who is working in a given part of the
system, or what is the level of modularization in the project.

Acknowledgments This research was supported by the National Sciences and Engineering Research
Council of Canada, and the Advanced Systems Institute of British Columbia. The author would like to
thank the reviewers of this paper for their thoughtful comments that greatly improved the quality of
this paper, and the Apache, Evolution, GNU gcc, Mozilla and PostgreSQL development teams.

@ Springer

392 Empir Software Eng (2006) 11: 369-393

References

Collberg C, Kobourov S, Nagra J, Pitts J, Wampler K (2003) A system for graph-based visualization
of the Evolution of software. In: SoftVis ’03: Proceedings of the 2003 ACM symposium on
software visualization, ACM, New York, New York, pp 77-ff

Eick SG, Graves TL, Karr AF, Mockus A, Schuster P (2002) Visualizing software changes. IEEE
Trans Softw Eng 28(4):396-412

Fischer M, Pinzger M, Gall H (2003a) Analyzing and relating bug report data for feature tracking.
In: Proc. 10th working conference on reverse engineering, IEEE, pp 90-101

Fischer M, Pinzger M, Gall H (2003b) Populating a release history database from version control
and bug tracking systems. In: Proceedings of the 19 IEEE international conference on software
maintenance (ICSM’03), IEEE Computer Society, pp 23-32

Fisher M, Gall H (2003) MDS-views: visualizing problem report data of large scale software using
multidimensional scaling. In: Proceedings of the international workshop on Evolution of large-
scale industrial software applications (ELISA)

Gall H, Jazayeri M, Krajewski J (2003) CVS release history data for detecting logical couplings. In:
Proceedings of the international workshop on principles of software Evolution (IWPSE), IEEE,
pp 12-23

German DM (2004a) Decentralized open source global software development, the GNOME
experience. Journal of Software Process: Improvement and Practice 8(4):201-215

German DM (2004b) Mining CVS repositories, the softChange experience. In: 1st international
workshop on mining software repositories, pp 17-21

German DM (2004c) Using software trails to reconstruct the Evolution of software. Journal of
Software Maintenance and Evolution: Research and Practice 16(6):367-384

German DM, Mockus A (2003) Automating the measurement of open source projects. In:
Proceedings of the 3rd workshop on open source software engineering

German DM, Hindle A, Jordan N (2004) Visualizing the Evolution of software using softChange. In:
Proceedings SEKE 2004 The 16th international conference on software engineering and
knowledge engineering, Knowledge Systems Institute, 3420 Main St. Skokie, Illinois 60076,
USA, pp 336-341

Girba T, Ducasse S, Lanza M (2004) Yesterday’s weather: guiding early reverse engineering efforts
by summarizing the Evolution of changes. In: Proceedings of the 20th IEEE International
Conference on Software Maintenance (ICSM’04), pp 44-49

Graves TL, Karr AF, Siy H (2000) Visualizing software changes. IEEE Trans Softw Eng 26(7):653—
661

Hassan AE, Holt RC (2003) The chaos of software development. In: Proceedings of the
international workshop on principles of software Evolution (IWPSE), pp 84-95

Hassan AE, Holt RC (2004) Predicting change propagation in software systems. In: Proceedings of
the 20th IEEE international conference on software maintenance (ICSM’04), pp 284-293

Lanza M (2001) The Evolution Matrix: recovering software Evolution using software visualization
techniques. In: Proceedings of the 4th international workshop on principles of software Evolution
(IWPSE), pp 3742

Lerner J, Triole J (2000) The simple economics of open source. Working Paper 7600, National
Bureau of Economic Research, http://papers.nber.org/papers/w7600

Liu Y, Stroulia E (2003) Reverse engineering the process of small novice software teams. In: Proc.
10th working conference on reverse engineering. IEEE, pp 102-112

Liu Y, Stroulia E, Wong K, German D (2004) Using CVS historical information to understanding
how students develop software. In: 1st international workshop on mining software repositories,
pp 32-36

Mockus A, Fielding RT, Herbsleb J (2002) Two case studies of open source software development:
Apache and Mozilla. ACM Trans Softw Eng Methodol 11(3):1-38

Ostrand TJ, Weyuker EJ (2004) A tool for mining defect-tracking systems to predict fault-prone
files. In: 1st international workshop on mining software repositories, pp 85-89

Ostrand TJ, Weyuker EJ, Bell R (2005) Predicting the location and number of faults in large
software systems. IEEE Trans Softw Eng 340-355

Purushothaman R, Perry DE (2005) Toward understanding the rhetoric of small source code
changes. IEEE Trans Softw Eng 31(6):511-526

Storey MA, Cubrani¢ D, German DM (2005) On the use of visualization to support awareness of
human activities in software development: a survey and a framework. In: Proceedings of the 2nd
ACM symposium on software visualization, pp 193-202. To be presented

@ Springer

http://papers.nber.org/papers/w7600

Empir Software Eng (2006) 11: 369-393 393

Williams CC, Hollingsworth JK (2005) Automatic mining of source code repositories to improve
bug finding techniques. IEEE Trans Softw Eng 31(6):466-480

Wu J, Holt RC, Hassan AE (2004a) Exploring software Evolution using spectrographs. In: Proc. 11th
working conference on reverse engineering, pp 80-89

Wu X, Murray A, Storey M-A, Lintern R (2004b) A reverse engineering approach to support
software maintenance: version control knowledge extraction. In: Proc. 11th working conference
on reverse engineering, pp 90-99

Ying A, Murphy GC, Ng R, Chu-Carroll MC (2005) Predicting source code changes by mining
change history. IEEE Trans Softw Eng 31(9):574-586

Zimmermann T, Weissgerber P (2004) Preprocessing CVS data for fine-grained analysis. In: 1st
international workshop on mining software repositories, pp 2—6

Zimmermann T, Weissgerber P, Diehl S, Zeller A (2005) Mining version histories to guide software
changes. IEEE Trans Softw Eng 31(6):429-445

Daniel M. German is assistant professor in the Department of Computer Science at the University of
Victoria. His main areas of research are software evolution, open source software development and
intellectual property.

@ Springer

	An empirical study of fine-grained �software modifications
	Abstract
	Introduction
	Research Questions
	Organization

	Methodology
	Analysis of Source Code Modification Records
	Number of Files in MRs
	Modification Coupling of Files in codeMRs
	Authorship

	Discussion
	Future Work
	Previous and Related Work
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

