
Analyzing and Relating Bug
Report Data for Feature
Tracking

Michael Fischer, Martin Pinzger and
Harald Gall
M.Fischer@infosys.tuwien.ac.at
M.Pinzger@infosys.tuwien.ac.at
H.Gall@infosys.tuwien.ac.at

TUV-1841-2003-18 June 16, 2003

Technical University of Vienna
Information Systems Institute
Distributed Systems Group

Gaining higher level evolutionary information about large software systems
is a key in validating past and adjusting future development processes. In
this paper, we analyze the proximity of software features based on modifi-
cation and problem report data that capture the system’s evolution history.
Features are instrumented and tracked, the relationships of modification
and problem reports to these features are established, and the tracked fea-
tures are visualized to illustrate their otherwise hidden dependencies. Our
approach uncovers these hidden relationships between features via problem
report analysis and presents them in easy-to-evaluate visual form. Particu-
lar feature dependencies then can be selected to assess the feature evolution
by zooming in into an arbitrary level of detail. Such visualization of inter-
woven features, therefore, can indicate locations of design erosion in the
architectural evolution of a software system. Our approach has been val-
idated using the large open source software project of Mozilla and its bug
reporting system Bugzilla.

Keywords: software evolution analysis, version history, bug reports,
feature analysis

c�2003, Distributed Systems Group, Technical University of Vienna

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-18402
fax: +43 1 58801-18491
URL: http://www.infosys.tuwien.ac.at/

Analyzing and Relating Bug Report Data for Feature Tracking �

Michael Fischer, Martin Pinzger, and Harald Gall
Distributed Systems Group

Vienna University of Technology
Argentinierstrasse 8/184-1

A-1040 Vienna, Austria
�fischer,pinzger,gall�@infosys.tuwien.ac.at

Abstract

Gaining higher level evolutionary information about
large software systems is a key in validating past and ad-
justing future development processes. In this paper, we an-
alyze the proximity of software features based on modifica-
tion and problem report data that capture the system’s evo-
lution history. Features are instrumented and tracked, the
relationships of modification and problem reports to these
features are established, and the tracked features are vi-
sualized to illustrate their otherwise hidden dependencies.
Our approach uncovers these hidden relationships between
features via problem report analysis and presents them in
easy-to-evaluate visual form. Particular feature dependen-
cies then can be selected to assess the feature evolution by
zooming in into an arbitrary level of detail. Such visual-
ization of interwoven features, therefore, can indicate loca-
tions of design erosion in the architectural evolution of a
software system. Our approach has been validated using
the large open source software project of Mozilla and its
bug reporting system Bugzilla.

Keywords: software evolution analysis, version history,
bug reports, feature analysis.

1. Introduction

Changing requirements and technologies as the driving
forces of software evolution requires the adaptation or re-
design of software systems and their architectures. For
large industrial or Open Source software systems data about
changes is stored in versioning and bug tracking systems
such as CVS [11] and Bugzilla [2]. This data provides im-
portant facts about the evolution of a software system and its

�This work is partially funded by the Austrian Ministry for Infrastruc-
ture, Innovation and Technology (BMVIT) and the European Commis-
sion under EUREKA 2023/ITEA-ip00004 ’from Concept to Application
in system-Family Engineering (CAFÉ)’.

architecture, hence enables engineers to learn from the past,
to determine problem areas and anticipate future changes.

However, the amount of recorded data is huge and not
easy to handle and therefore often not considered by engi-
neers during maintenance. For addressing this problem we
introduced the release history database (RHDB) [14] that
relates versioning with bug reporting data, stores the data
in a structured way, and facilitates browsing and navigation
of the historical data as well as the computation of evolu-
tion metrics. The RHDB provides the basis for our further
software evolution analysis tasks.

MathML

HTTPS

About

feature
overlap

Figure 1. Grouping of Mozilla Features

In this paper, we extend the RHDB by feature data and
concentrate on feature evolution analysis to identify groups
and overlapping areas of feature related problem reports as
depicted by Figure 1. The goal is to analyze features (such
as MathML, HTTP, or About) and problem reports, relate

them across several releases, and to visualize their interre-
lationship. According to [28] we refer to a feature as an
observable and relatively closed behavior or characteristic
of a (software) part. Features are natural units to describe
software systems from the perspective of application users,
software developers, and software maintainers. Information
about the implementation of features allows for reasoning
about the impact of changes to features and the architec-
tural design of software systems. By adding the dimension
of evolution to this data we further can reason about future
directions of feature implementations and point out problem
areas that should be taken care of by software maintainers.

Our basic idea is to cluster problem report information
related with a certain feature and to test the dependencies
between files, which are commonly changed to fix the prob-
lem described in the problem report. The “distance” be-
tween two problem reports can be expressed as the number
of files commonly modified to fix both problems. The more
files they have in common the more similar the problems
are.

Groups of reports can be summarized to provide a clearer
picture about the problems concerning a single feature or a
set of features. Moreover, hidden dependencies which are
introduced through modifying groups of supposedly unre-
lated files from different modules are identified. Typically,
such dependencies indicate bad system design or its erosion.

The contribution of this paper is a method to track fea-
tures by analyzing and relating bugreport data filtered from
a release history database. Features are instrumented and
tracked, the relationships of modification and problem re-
ports to these features are established, and the tracked fea-
tures are visualized to illustrate their otherwise hidden de-
pendencies. Particular feature dependencies then can be se-
lected to assess the feature evolution by zooming into an
arbitrary level of detail. Such visualization of interwoven
features, therefore, can indicate locations of design erosion
in the architectural evolution of a software system.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview about related work in the area of
software evolution analysis. Section 3 describes the data
source, our data model as well and validates the imported
data. Following in Section 4 describe the feature extraction
process and its results. The application of multidimensional
scaling on release history and feature data is discussed in
Section 5. We conclude in Section 6 with an indicate of
future work.

2. Related Work

Mozilla has been already addressed, for example, by
Mockus, Fielding and Herbsleb in a case-study about Open
Source Software projects [26]. They also used data from
CVS and the Bugzilla bug-tracking system but in contrast

to our work focused on the overall community and develop-
ment process such as code contribution, problem reporting,
code ownership, and code quality including defect density
in final programs, and problem resolution capacity, as well.

In [7] Bianchi et. al studied the entropy of a software sys-
tem to assess its degradation by applying the entropy class
of metrics on successive releases. The defined entropy class
consists of several single metrics that take into account in-
ternal, external and holistic aspects of a software system.
By measuring defect and maintenance effort for each met-
ric, they are able to estimate degradation. They applied their
approach to a small academic teaching project in which stu-
dents had to record their activities on preprinted forms. Our
approach is not based solely on the calculation of metrics
and in addition we deal with real world data of a large soft-
ware project.

Wong et. al [31] propose three different metrics for mea-
surement of binding features to components or program
code. They quantitatively capture the disparity between a
program component and a feature, the concentration of a
feature in a program component, and the dedication of a
program component to a feature. Whereas they focus on
the implementation of features in one single release of a
software system we take into account historical data of sev-
eral (all) releases to assess the evolution of features. Future
work could combine both approaches.

In [23] Lanza depicts several releases of a software sys-
tem in a matrix view using rectangles. Width and height of
rectangles represent specific metrics (e.g. number of meth-
ods, number of instance variables of classes) according to
the history of classes is visualized. Based on the evolution
matrix classes are assigned to different evolution categories
such as, for example, pulsar (class grows and shrinks re-
peatedly) or supernova (size of class suddenly explodes).
Whereas he analyzes the evolution of classes we focus on
features. However, a combination of both approaches could
be promising.

Hsi and Potts [20] studied the evolution of user-level
structures and operations of a large commercial text pro-
cessing software package over three releases. Based on user
interface observations they derived three primary views de-
scribing the user interface elements (morphological view),
the operations a user can call (functional view), and the
static relationships between objects in the problem domain
(object view). As this approach does not consider a thor-
ough code analysis, user interface issues are usually not
taken into account during code analysis, a fusion with meth-
ods regarding code and release history data would yield op-
timum results in feature evolution analysis.

In [15, 16] our group examined the structure of a
Telecommunications Switching Software (TSS) over sev-
eral releases to identify logic coupling between system and
sub-systems as also addressed by Bieman et. al in [8].

2

Based on release history data of this TSS Gall et. al pre-
sented an approach to use color and 3D to visualize the evo-
lution history of large software systems [17]. Colors were
primarily used to highlight main events of the system evo-
lution and reveal unstable areas of the system. In the in-
teractive 3D presentation it is possible to navigate through
the structure of the system on a very coarse level and in-
spect several releases of the software system. Our approach
extends these approaches by including feature and problem
report data.

The approach described in [21] refers to Quantitative
Analysis, Change Sequence Analysis, and Relation Analy-
sis (QCR) a new Methodology for software evolution analy-
sis. It is composed of three steps: The Quantitative Analysis
is based on numerical metrics for the assessment of growth
and change behavior. As second step the Change Sequence
Analysis groups change events into sequences, which helps
to detect common change patterns of system parts. Finally,
the Relation Analysis compares classes based on change
events and reveals the dependencies within the historical
development of the regarded entities. The developed and
adapted methods and techniques of QCR were validated
based on empirical data collected from a medical software
system. Findings of this work will be used to extend our
Feature Evolution Analysis Model.

3. Modification and Problem Reports

Versioning information in the form of modification re-
ports (MR), and problem reports (PR) consisting of bug
data and patch information are the basic inputs for the con-
struction of a RHDB. Typically, modification reports are
retrieved from versioning systems such as CVS (Concur-
rent Versions System) [11] and problem reports are obtained
from bug tracking systems such as Bugzilla. The release
history database constitutes the basis for our further soft-
ware evolution analysis activities.

Description #
Problem Reports imported into the RHDB 184625
ID of last problem report in RHDB 184798
Problem reports with attachments 49450
Attachments downloaded 37487
Attachments containing patch information 26644
Bugreports with pointers to patches in attachments 11375

Table 1: Problem report data in RHDB

An important step of our data import process is the es-
tablishment of the links between MRs and PRs since CVS
provides no formal mechanism for this. Such a link is con-
structed whenever a problem report ID number is found in
an MR. These IDs are entered by authors of source code
modifications as free text. Consequently, wrong links may
be created because the context in which an ID is used is not

clear, report IDs are incorrect or not specified at all. In all
three cases the effect on the RHDB is a lower data quality.

Because these links between MRs and PRs are crucial
for our analysis, we developed a link validation method that
is based on the problem report ID number and the file name
affected by a modification. Basically, our validation method
rates the confidence of links between MRs and PRs. Prob-
lem report ID numbers in MRs are detected using a list of
regular expressions. A match is rated according to the con-
fidence value we have assigned to the expression and can
be high (h), medium (m), or low (l). An expression such
as “bug #42” is rated high because it definitely identifies a
PR. On the contrary, a plain six digit number just appearing
in the text of an MR is rated as low because it also could be
something else such as, for example, a date specification.

To further improve the correctness of links between MRs
and PRs we check the file names specified in MRs and PRs.
More precisely, we investigate patches that are attached to
problem reports and check if the associated file of the mod-
ification report is referenced as target in the patch. If this
is true, the rating of the problem report number is changed
from ’h’ to ’H’, ’m’ to ’M’, or ’l’ to ’L’, respectively. All
rating values are stored as the MR–PR relationship, thus can
be included in queries on the release history database.

In the following we apply the link validation method on
the historical data of the Mozilla project and show its re-
sults. We considered all problem reports that were entered
up to version 1.3a of Mozilla (i.e. December 10, 2002). Ta-
ble 1 gives an overview of problem reports and attachments
imported to our release history database.

To adjust the data in the RHDB we compared the number
of problem reports retrieved from Bugzilla with the number
of reports referenced by modification reports as shown in
Table 2. Two fields of a Bugzilla problem report are of in-
terest for our analysis: resolution and status. A detailed
description of the semantic can be found in [1].

Regarding software evolution analysis problem reports
with the resolution value fixed are of major interest because
fixed indicates that a solution for this problem is tested and
checked into the CVS tree. A comparison of the overall
number of PRs with the number of PRs referenced by MRs
(CVS) indicated that a large number of PRs fall into the
group of fixed reports.

Table 2 indicates that 91% of the referenced reports
“ref” fall either into the group fixed/resolved (7705) or
fixed/verified (18940). The other categories are sparsely
filled which may indicate a positive false detection or incor-
rect tracking status of PRs. If we compare this data with all
reports downloaded from the Bugzilla database, we recog-
nize that a large number of PRs within the groups duplicate,
invalid, won’t fix, and works for me has not been referenced.
These results support our assumption in two ways: firstly,
only records about PRs are made which have an effect on

3

Table 2. Problem reports of Bugzilla

� Status undefined new closed assigned reopend resolved verified unconfirmed
Resolution all / ref all / ref all / ref all / ref all / ref all / ref all / ref all / ref
undefined 1318 / 199 19582 / 415 0 / 0 7016 / 510 988 / 173 0 / 0 0 / 0 3348 / 16
duplicate 0 / 0 0 / 0 282 / 5 0 / 0 0 / 0 13855 / 66 41648 / 487 0 / 0
fixed 0 / 0 0 / 0 333 / 63 0 / 0 0 / 0 14806 / 7705 36620 / 18940 0 / 0
invalid 0 / 0 0 / 0 315 / 6 0 / 0 0 / 0 4551 / 43 9116 / 113 0 / 0
later 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 4 / 4 6 / 5 0 / 0
moved 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 24 / 0 73 / 1 0 / 0
remind 0 / 0 0 / 0 3 / 0 0 / 0 0 / 0 1 / 1 5 / 5 0 / 0
won’t fix 0 / 0 0 / 0 92 / 1 0 / 0 0 / 0 1823 / 46 3123 / 69 0 / 0
works for me 0 / 0 0 / 0 359 / 2 0 / 0 0 / 0 9765 / 93 15569 / 308 0 / 0

the CVS repository; and second, a significant number of the
identified IDs is valid if we presume that duplicate, fixed,
etc. reports are equally distributed over the ordinary scale of
report IDs, i.e., if IDs would be random in MRs the chances
to pick a false or correct PR ID would be equal.

We now give quantitative results of the link validation
method applied on the reconstructed links between MRs
and PRs. In total 33499 links have been reconstructed. Our
link validation method checked all these links and accord-
ing the regular expression rated 27835 links as high, 4908
links as medium, and 758 links as low. Investigating the
patch information 9379 of links rated high were validated
that is 33%. For the other two confidence categories we
obtained similar values. 3425 not validated references face
1483 validated in group medium. In group low the propor-
tion is 496 to 260. Restricting this comparison to *c, *.cpp,
and *.h files does not reveal significant differences.

fixed reports all reports
Product all found % all found %
Browser 35520 20396 57.42 129889 22208 17.10
Bugzilla 1630 9 0.55 4564 26 0.57
Calendar 371 192 51.75 709 197 27.79
Chimera 87 86 98.85 96 95 98.96
Derivatives 1 0 0.00 23 1 4.35
Directory 189 93 49.21 380 103 27.11
Documentation 225 8 3.56 522 10 1.92
MailNews 7089 4583 64.65 29112 4978 17.10
Phoenix 208 8 3.85 1180 9 0.76
Tech Evangelism 1314 6 0.46 4908 16 0.33
Webtools 239 1 0.42 617 2 0.32
mozilla.org 1126 5 0.44 2122 15 0.71

Table 3: Products and problem reports (excerpt)

A summarization of PRs in the RHDB with respect
to different product categories defined in Bugzilla for the
Mozilla Application Suite [4] is given in Table 3. Results
for reports having status fixed are listed in the left column,
whilst the right column labeled “all reports” lists the num-
ber of reports in the database regardless of their status. In
the most important category “Browser” we found 20396 of

35520 downloaded reports which yields to a success rate of
57.42%. Interesting are also other categories such as “Tech
Evangelism”, “Webtools”, or “mozilla.org” which may be
used as indication for false positive detections which is less
than 1%.

Our conclusions from the above data is: references to
problem reports are available in a sufficient quantity and
quality to allow further analysis based on this data.

4. Feature Extraction

Goal of our feature extraction process is the gain of in-
formation about an executable program to map the abstract
concept of features onto a concrete set of computational
units. A computational unit can be a block, method, class,
sub-module, or file. The extracted information augments
the RHDB with observations about particular releases of a
product and can be used to apply evolutionary analysis on
the feature level. Results of the analysis greatly support the
illustration of dependencies and changes in large software
systems. We restricted ourselves on dynamic feature anal-
ysis, since we were basically interested on a representative
set of data to validate our approach.

The used extraction process is based on Software Recon-
naissance analysis technique [29, 30] and utilizes code in-
strumentation for its application. This approach using GNU
tools [3] has been also addressed in brief in [12]. Currently,
the whole process is limited to file level analysis which
helps to reduce the amount of data to handle but could be
extended easily onto the method level.

4.1 Scenarios and features

For feature extraction we used the scenarios defined in
Table 4. Every scenario has been executed three times to
obtain one set of three test-runs for every scenario. Thus
a feature, e.g., HTTPS, is defined as the set of files com-
mon to all three call graphs extracted from the execution

4

profiles for the same scenario. When a feature is used by
several scenarios its location can be determined by using
a concept lattice. Before starting extracting features from
Mozilla 1.3a we created a new user profile called tuser, i.e.,
the profile as created by Mozilla, and changed the following
options: no proxy support, no caching, blank background.

Scenario Test-Runs Description
Core 0, 1, 2 mozilla start / blank window / stop
HTTP 3, 4, 5 TrustCenter.de via HTTP1

HTTPS 6, 7, 8 TrusterCenter.de via SSL/HTTP2

File 9,10,11 read TrustCenter.de from file
MathML 12,13,14 mathematic in Web pages3

About 15,16,17 “about:” protocol

Table 4: Scenario definitions

The prepared version of Mozilla was started using
the following command: mozilla -P tuser <url>
where -P tuser is the name of the configuration to use
and <url> is one of the URLs defined in the scenarios in
Table 4.

4.2 Extraction process

Figure 2 depicts the extraction process and its interme-
diate outputs. Since some of the following steps are com-
putationally intensive, it was more feasible to first create all
necessary data and then to initiate the analysis process.

4. Create concept lattice

5. Extract feature information

6. Import feature information into database

3. Parse profile information

2. Crate call graphs

1. Run scenario

method−name−map.txt, gprof.out

binrel.txt

lattice.txt

feature.dat

gmon.out

Figure 2. Profiling Process

1. As first step the application has to be started with one
of the specified parameters to create the profile data for
the scenario defined in Table 4. The result of this step

1http://www.trustcenter.de/
2https://www.trustcenter.de/
3http://www.w3.org/Math/testsuite/testsuite/General/Math/math3.xml

is a file holding the profile data created by the GNU
runtime library. Different scenario data are stored in
different files and are post-processed on a file-by-file
basis.

2. A modified version of the GNU gprof program [19]
is used to extract the method-name-to-file-name map-
ping. This has to be done only once since the symbol
information is static. For every scenario created in the
previous step the call graph is generated using the un-
modified version of GNU gprof and stored in separate
files.

3. With the help of a small Perl script all call graphs are
parsed and the function and method names are mapped
onto file names using the mapping from the previ-
ous step. For easier manipulation and as consistency
check, the file names are looked up in the RHDB and
replaced by their database IDs. Outputs of this step are
the binary relationships of file IDs and scenarios IDs
telling which file was required by which scenario.

4. From the binary relationship data a single concept lat-
tice [24] is generated (see Figure 4).

5. Analysis of the concept lattice identifies the computa-
tional units, i.e., in our case files, specifically required
for a feature and derives a detailed relationships be-
tween features and computational units. The result of
this step is a list of file IDs required to realize a specific
feature.

6. Finally, a Perl script puts all file IDs, which character-
izes a feature, together with with the release ID, the
one under which the source files were released, into
the RHDB.

4.3 Profiling implementation

Prerequisite for creation of profile data is the existence of
an executable program with profiling support enabled. But
the way to obtain a usable version was paved with pitfalls.
For most of the compiling and testing we used two ma-
chines: a Pentium 4, 2GHz 512MB, RedHat 8.0 (gcc-3.2-7,
libc-2.2.93) for most of the work and a Pentium II, 333MHz,
320MB, SuSE 8.1 (gcc-3.2, libc-2.2.5) & SuSE 6.2 (egcs-
2.91.66, libc-2.1.1). One barrier in building older versions
of Mozilla was the finding of a working compiler/library
combination (see Table 5). This problem was introduced by

Product Profiling Build Run
Mozilla 1.3a gcc/glibc RedHat 8.0 RedHat 8.0
Phoenis 0.5 gcc/glibc RedHat 8.0 RedHat 8.0
Mozilla 0.9.2 gcc/glibc SuSE 6.2 RedHat 8.0
Mozilla � 0.9.2 other SuSE 6.2 RedHat 8.0

Table 5: Mozilla & OS Version

changes in various header files. The fastest and simplest so-
lution to solve to problem was to install a Linux distribution

5

shipped around the time the pertaining Mozilla package was
released.

A none obvious problem was the inability of the GNU
glibc to handle large amounts of profile information. A
problem, it was finally fixed at the end of August 2002
(problem report 43794), in the GNU glibc libaray, originally
reported by Jim Panetta5 in July 2001, causes that data are
not written to disk when a program with a large number of
routines is executed (a table was improperly restricted to
64K entries). This was the reason why the statically linked
versions of Mozilla produced only profile data when run-
ning on RedHat 8.0 (see Table 5) but not SuSE 8.1.

Another unexpected problem was the impossibility to
obtain complete call graph data when libraries were dy-
namically linked into the system. Prior to Mozilla release
0.9.2 static linking was not possible, only building an exe-
cutable based on shared libraries was supported, which in
turn causes problems with profiling since the GNU C/C++
runtime library writes the results to a fixed file location.
This has two drawbacks: first, function calls which origi-
nate from outside the scope of a library can not be traced;
second, only profile data of a single library can be produced.

A solution we evaluated for early Mozilla versions was
source code instrumentation using printf() statements. The
necessary modifications in the source code, several thou-
sand methods have to be instrumented, were done by an
architecture recovery tool we developed for finding patterns
in source code [27]. The modified version of this tool is
able to find complex patterns, i.e., patterns which can’t be
specified using pure regular expressions, and to replace or
insert code sequences similar to UNIX’s sed or awk. Due
to time limitations (human resources) we were not able to
specify all patterns required for detecting all types of func-
tion and method headers. But the results were promising
and we would like to further explore this method.

4.4 A feature concept lattice

Formal concept analysis is a mathematical sound tech-
nique for analyzing binary relations between a set of objects
and a set of attributes [9, 18, 25]. Concept lattices are de-
rived by concept analysis when applied on formal context.
For our analysis we define the formal context as follows:
computational units � are considered as the objects of the
concept and scenarios � are considered as attributes; if � is
executed when � is performed, then � and � are in relation,
otherwise not [13]. In our study computational units are of
file size granularity. For generation of the concept lattice
we put the binary relationship data into a tool called con-
cepts [24] using a customized output format. This resulting

4http://bugs.gnu.org/cgi-bin/gnatsweb.pl
5http://mail.gnu.org/archive/html/bug-glibc/2001-07/msg00130.html

lattice data can be further processed by a graph layout pro-
gram to produce a visual representation which is a directed
acyclic graph.

(3;1,2,3) (6;1,2,4)

(7;1,2,3,4,5)

(9;0,1,2,3,4,5)

(2;1,2)

(1;2) (4;5)

(T)

(5;4)(8;0)

File

HTML

Core

AboutMathMLHTTPSstart/stop

HTTP

Network

Figure 3. Assumed concept lattice

For the specification of the required scenarios we as-
sumed the lattice depicted in Figure 3 with a one-to-one
relationship between scenarios and features except for the
“HTTP” scenario. Filled circles indicate concepts which
introduce new objects, open circles indicate concepts which
unite a set of of sub-concepts to a new concept without in-
troducing new objects. A Comparison of this lattice with
the obtained one from the Mozilla profile data (Figure 4)
shall validate the assumption of the scenario data.

Before the lattice generation could start we had to
remove six entries, introduced due to the indeterminis-
tic behavior of Mozilla, from the raw data file which
did not appear in every of the three test-runs of a sin-
gle scenario. For instance, we detected single refer-
ences to nsPluginsDirUnix.cpp and nsPluginsDirUtils.h
in the first test-run of scenario 4, or multiple refer-
ences to nsPopupBoxObject.cpp in test-runs 2, 3, 5, 7,
and 14. The resulting lattice is depicted in Figure 4.
Contrary to the usual notation of using objects and at-
tributes ����� ���� ���� ���� ���� ���� for concepts, in Fig-
ure 3 and Figure 4 we use concept id �� and scenario ��
���� ��� ���� ��� as notation.

In the following we characterize the concepts which map
directly onto the defined scenarios. Concept 1 corresponds
with the “HTTPS” feature from scenario 2 and adds 8
files from the sub-modules security/manager and netwerk/
socket [sic]. The “HTTP” scenario is mapped onto con-
cept 2 which actually is a unification of three sub-concepts
3 (“TrustCenter” display capability), 5 (JavaScript), and 8
(“Network” capability). In contrast to “HTTPS” which con-
sists of security related files only, the expected “HTTP” in-
formation must be derived from concept 8. Concept 3 and 4
map directly onto the “File” scenario and the “About” sce-
nario, respectively. Both concepts introduce 5 extra refer-

6

(6;1,2,3,5) (11;1,2,4,5)(9;1,2,3,4)(14;0,1,2,4)

(3;1,2,3) (8;1,2,4)

(15;0,1,2,3,4) (16;0,1,2,4,5)

(17;0,1,2,3,4,5)

(12;1,2,3,4,5)

(5;1,2,5)

(2;1,2)

(7;4)

(10;4,5)

(4;5)(1;2)(13;0)

(T)

MathMLHTTPSstart/stop About

File

Core

HTTP

Network

content, layout, history

Figure 4. Concept lattice from profile data

ences. Besides other features, compression (zlib), Portable
Network Graphics (PNG), required by the “MathML” test
case, concept 7 adds XSL Transformations (XSLT) from
the sub-module extensions/ transformiix to the concept lat-
tice. XSLT is a language for transforming XML (Extensible
Markup Language) documents into other XML documents.

The “Core” scenario introduces concept 13 which is used
by start/stop only and adds 2 files: nsPlaintextDataTransfer.
cpp and nsTimeBomb.cpp. This is surprising since we ex-
pected no extra files to be added by this concept. The
most specialized concept 17 consists of all objects which
are common to all scenarios. For Mozilla 1.3a and our set-
ting these are 705 files from 136 directories divided onto 26
modules.

From the remaining concepts we characterize the more
interesting ones in brief: on top of the lattice is the largest
concept located. It is indicated by (T) and represents a uni-
fication of all sub-concepts below. It comprises 959 ref-
erences to objects, i.e., source files. Concept 8 primar-
ily adds 18 network and protocol related files which cor-
responds with the assumption of a concept providing this
service to the “HTTP” and “MathML” scenario. The largest
sub-concept, except for the Core, is concept 12 which adds
99 referenced files from 7 different modules. Basically con-
tent, layout, and browsing history related files are added.
This corresponds with our assumption of a “HTML” feature
in Figure 3.

We conclude that the obtained lattice validates the as-
sumption and that the feature data gained can be accepted
for the next processing step.

4.5 Results

Extraction of call graph data using GNU tools was un-
expectedly difficult in terms of process application and re-

source consumption for a software package of this size. Call
graph data from first Mozilla version are still not available
but would be required to build an accurate picture of earlier
program versions.

With a mixture of compiler supported profiling and man-
ual instrumentation of source code, it is possible to gain
the required runtime information to enable feature extrac-
tion from current releases and historical source code.

5. Grouping & Relating Features

From the data in the RHDB we selected the “Core” and
three features (“HTTPS”, “MathML” and “About”) for find-
ing groupings in PR data using multidimensional scaling
(MDS) [22].

5.1 Introduction to MDS

The goal of MDS is to map objects � � �� � � � � 	 to
points ��� � ��� � �

� in such a way that the given dis-
similarities
��� are well-approximated by the distances
������� whereas � is the dimension of the solution space.
MDS is defined in terms of minimization of a cost function
called Stress, which is simply a measure of lack of fit be-
tween dissimilarities
��� and distances ��� � ���. In its
simplest case, Stress is a residual sum of squares:

���	

����� � � � ��� � �

��
����

�
��� � ��� � ����
�

� �

�

where the outer square root is just a convenience that gives
greater spread to small values [10].

For our experiments we used metric distance scaling
which is a combination of Kruskal-Shepard distance scal-
ing and metric scaling. Kruskal-Shepard distance scaling is
good at achieving compromises in lower dimensions (com-
pared to classical scaling) and metric scaling uses the actual
values of the dissimilarities in contrast to non-metric scal-
ing which considers only their ranks [10].

5.2 Data generation

PR data for the dissimilarity matrix are selected directly
from the RHDB using a Java program which implements
the SQL queries. Reports with more than 500 referenced
files are not considered since mass-modifications are most
likely concerned with administrative problems such as the
correct copying license in the header of a file. These modifi-
cations are rare but have a negative impact on the optimiza-
tion process. Luckily, any “major” or “critical” classified
PRs are not affected by this selection.

The generation process of the dissimilarity matrix can be
formally described as follows. A problem report descriptor

7

�� of a problem report � is built of all artefacts �� which
refer to a particular problem report via their modification
reports �� (linkage MR – PR; see Section 3):

�� � ��������� �������

The distance data for every pair of problem report descriptor
��, �� are computed according to the formula below and fed
into the Dissimilarity Matrix.

��
����� ��� �

�
� if � 	�� �
�
� ���

�
����	��	��

� if ���

where �� and �� denote the size of the descriptors �� and
�� respectively. The fraction �

� is used to emphasize the
distance between unrelated objects and “weakly” linked ob-
jects. All values are scaled according to the maximum num-
ber of elements the descriptors can have in common, i.e.,
they are scaled to the size of the smaller one. Now we just
need to define when two problem reports are linked: � and
� in the RHDB are linked via a software artefact �� if a
modification report �� exists such that

����� ����� �����

or two modification reports ��, �
 exist such that

����� ����� � ����
 ��
�� �

5.3 Process instantiation

Since most of the default settings of Xgvis [6] were sat-
isfying for our purpose, we had to set only the dimension
of the solutions space to 2. The initial layout was manu-
ally configured by first moving all objects belonging to a
certain feature into a distinct corner of the workspace. Fol-
lowing this manual setup phase, three optimization rounds
were used to minimize the Stress function using Krsk/Sh for
the first round, Classic for the second and Krsk/Sh with de-
creasing step-size again for the final layout. The results for
the set of input data is depicted in Figure 5.

5.4 Results

For this analysis we used PRs related to the core and
reports related with the features “HTTPS”, “MathML” and
“About”. Due to data reduction reasons we selected alto-
gether 2462 PRs from the RHDB for the core which were
rated ’H’ or ’h’. This criterion has been chosen to reduce
the amount of data for the optimization process since our
hardware was not able to handle data sets with, e.g., 9000
data points. Other criteria, e.g., bug resolution or bug status,
have not been used to reduce the amount of data. Extra large
reports, i.e., as mentioned above reports with more than 500

1
2 3

4

5 6 7

9
8

10

11

13
14 15

16
18

19

21

22
20

12

17

23

Figure 5. Mozilla Core & Feature Groups

references, were not found in the core data. PRs of the
core are depicted as filled circles and constitute the back-
ground of Figure 5. The representation and number of PRs
selected for the three features is as follows: the “HTTPS”
feature is represented by (green) circles and consists of 170
reports; feature “MathML” is indicated by (blue) rectangles
and consists of 304 reports whereas four “minor” rated re-
ports had to be deleted due to size limit of 500 from the
original set; and finally feature “About” is visualized using
(pink) X and consists of 97 reports; no major or critical re-
ports were removed but three “minor” reports. To indicate
the number of files affected by a modification three differ-
ent glyph sizes are used: small glyphs depict reports which
are referenced � � times; medium sized glyphs symbolize
that the number of references is in the range ������; large
glyphs represent reports which are referenced � � times.

The result of the optimization process, final value of the
Stress function was ����, is depicted in Figure 5. Indi-
vidual results of the indicated areas - the selection of the
data objects had to be done manually - are listed in Table 6
whereas the columns have the following meaning: (a) num-
ber of problem reports in the indicated area; (b) number of
total files referenced; (c) number of *.h, *.c, *.cpp files ref-
erenced; (d) ratio of code files and total files; (e) number
of different subdirectories; (f) number of different modules,
i.e., first level directories; (g) number of modified files per
subdirectory; (h) number of subdirectories per module.

To illustrate the effect of grouping we analyzed the PRs

8

ID a b c d e f g h
1 92 146 62 .42 25 7 5.84 3.57
2 80 244 191 .78 26 3 9.38 8.66
3 36 52 46 .88 12 4 4.33 3.00
4 60 29 25 .86 15 5 1.93 3.00
5 88 52 52 1.00 2 1 26.00 2.00
6 26 79 67 .85 36 8 2.19 4.50
7 11 217 209 .96 117 23 1.85 5.08
8 65 241 141 .59 86 20 2.80 4.30
9 24 20 20 1.00 13 3 1.53 4.33

10 7 196 195 .99 111 25 1.76 4.44
11 42 32 25 .78 13 7 2.46 1.85
12 24 69 69 1.00 51 19 1.35 2.68
13 18 560 189 .34 156 15 3.58 10.40
14 37 189 174 .92 21 6 9.00 3.50
15 84 42 38 .90 7 2 6.00 3.50
16 67 159 152 .96 32 11 4.96 2.90
17 28 115 106 .92 31 6 3.70 5.16
18 141 85 79 .93 21 4 4.04 5.25
19 24 9 8 .89 5 2 1.80 2.50
20 7 205 203 .99 94 24 2.18 3.91
21 13 125 121 .97 117 25 1.06 4.68
22 13 312 312 1.00 131 23 2.38 5.69
23 28 53 49 .92 6 2 8.83 3.00

Table 6: Selected areas of Figure 5

located in the indicated areas of Figure 5 and summarized
our findings about the more interesting areas. PRs re-
lated to a single sub-module are located in (4) where we
found reports about changes in the image library, e.g., PNG
(Portable Network Graphics) or GIF (Graphics Interchange
Format). Likewise, the areas (5), (6), and (8) have a narrow
defined characteristic. They refer to PRs related to HTML
parsing, network I/O, and the editor core, respectively. In
area (16) we identified problems concerning printing, e.g.,
print preview, or crash after printing. Whereas printing is
a relative small problem PRs affecting the layout and style
system are located in (14), (15), (17), and (18). Indicative
for interfaces changes are a low number of reports and a
high number of files referenced. This happens for example
in (7) where a new include file was introduced, (10), (12),
(13), (20), or in (22) where part of the interface definitions
of the Mozilla component model were changed.

The second feature map is depicted in Figure 1 and
shows 571 PRs referenced by MRs from three features. We
obtained ����� as the final value for the Stress function.

ID a b c d e f g h
About 32 67 65 .97 21 5 3.19 4.20

HTTPS 131 182 74 .41 35 11 5.20 3.18
MathML 173 341 260 .76 50 9 6.82 5.55

overlap 210 2648 2037 .77 472 34 5.61 13.88

Table 7: Selected areas of Figure 1

Even though distinct features consisting of different files
were selected, the analysis shows that the “MathML” and
“About” share some common areas 10, 12, 13, 14, 16, 17,
22 (see Figure 5). The overlap between these two features is

also depicted in Figure 1 as “feature overlapping area”. This
marked area consists of 53 PRs. In total 961 C/C++ files are
referenced. In contrast to the situation with “MathML” and
“About”, the “HTTPS” feature is relatively independent of
the two others except for a few common PRs (36756, 45797,
74803, 99163, 100476, 136756, 157136). Three PRs are
common to all three features: 88413, 124042, 104158 (PRs
referenced here can be checked online via the Mozilla Bug
Database [5]). Also interesting is the spread of a feature
or part of it over the complete core map which indicates
dependencies with many different parts of the system, e.g.,
“About” which has no hot-spot in Figure 5.

MDS enables the visualization of dependencies between
features introduced through PRs, which require modifica-
tion in several files to solve a single closed problem. De-
generation in form of feature spread or interwoven features
can be recognized easily.

The results of our methods were shown with a subset of
features of Mozilla, but can be extended to other features
rather straightforward. As a consequence, other sets of in-
terwoven or somehow related features can be shown using
the filtered bug and modification report data produced by
our approach.

6. Conclusions and Future Work

The qualitative population of a release history database
and augmentation with filtered problem report information
is crucial for a thorough software evolution analysis. In this
paper, we have shown that combining release history data
with information from problem reports and their analysis
offers new opportunities in the detection of otherwise hid-
den relationships between features. Our approach suggests
first to instrument and track features, secondly to estab-
lish the relationships of modification and problem reports
to these features, and thirdly to visualize the tracked fea-
tures for illustrating their non apparent dependencies. Our
approach uncovers these hidden relationships between fea-
tures via problem report analysis and presents them in easy-
to-evaluate visual form. Particular feature dependencies
then can be selected to assess the feature evolution by zoom-
ing in into an arbitrary level of detail. Such visualization
of interwoven features, therefore, can indicate locations of
design erosion in the architectural evolution of a software
system. Our approach has been validated using the large
open source software project of Mozilla and its bug report-
ing system Bugzilla.

An interesting area for future work is the implementation
of a simulation system to evaluate the impact of arbitrary
design changes, for example introducing a new interface,
on feature grouping. This could lead to a forecast simulat-
ing the stability of a system’s design. Another future per-
spective is the coupling of this visualization approach with

9

architecture recovery systems. One possible application is
to gain insight into the impact of problem reports on archi-
tectural styles and patterns. A pattern search process might
identify all implementations of a socket connection. The lo-
cation information is augmented with information from the
RHDB and visualized using MDS.

7. Acknowledgments

We thank all the Mozilla developers for providing all
their data for this case study of the evolution of an Open
Source project.

References

[1] A Bug’s Life Cycle.
http://bugzilla.mozilla.org/bug status.html.

[2] Bugzilla Bug Tracking System. http://www.bugzilla.org/.
[3] GNU’s Not Unix! - the GNU Project and the Free Software

Foundation (FSF). http://www.gnu.org/.
[4] Mozilla Branding.

http://www.mozilla.org/roadmap/branding.html.
[5] The Mozilla Bug Database. http://bugzilla.mozilla.org/.
[6] XGobi: A System for Multivariate Data Visualization.

http://www.research.att.com/areas/stat/xgobi.
[7] A. Bianchi, D. Caivano, F. Lanubile, and G. Visaggio. Eval-

uating Software Degradation through Entropy. In 7th Inter-
national Software Metrics Symposium, November 2001.

[8] J. Bieman, A. Andrews, and H. Yang. Understanding
change-proneness in OO software through visualization. In
Proceedings of 11th International Workshop on Program
Comprehension. IEEE, 2003.

[9] G. D. Birkhoff. Lattice Theory. American Mathematical
Society, 1967.

[10] A. Buja, D. F. Swayne, M. Littman, N. Dean, and H. Hof-
mann. XGvis: Interactive Data Visualization with Multi-
dimensional Scaling. Tentatively accepted for publication
in the Journal of Computational and Graphical Statistics,
2001. http://www.research.att.com/areas/stat/xgobi/papers/
xgvis.pdf.

[11] P. Cederqvist et al. Version Management with CVS, 1992.
http://www.cvshome.org/docs/manual/.

[12] T. Eisenbarth, R. Koschke, and D. Simon. Aiding Pro-
gram Comprehension by Static and Dynamic Feature Analy-
sis. In Proceedings of the International Conference on Soft-
ware Maintenance. IEEE Computer Society Press, Novem-
ber 2001.

[13] T. Eisenbarth, R. Koschke, and D. Simon. Locating fea-
tures in source code. Transactions on Software Engineering,
29(3):210–224, 2003.

[14] M. Fischer, M. Pinzger, and H. Gall. Populating a Release
History Database from Version Control and Bug Tracking
Systems. In Proceedings of the 2003 International Confer-
ence on Software Maintenance (ICSM 2003), Amsterdam,
Netherlands, September 2003. to be published.

[15] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. In Proceedings
of the International Conference on Software Maintenance
(ICSM ’98). IEEE Computer Society Press, 1998.

[16] H. Gall, M. Jazayeri, R. R. Klösch, and G. Trausmuth. Soft-
ware Evolution Observations Based on Product Release His-
tory. In Proceedings of the International Conference on Soft-
ware Maintenance 1997 (ICSM’97), pages 160–166, 1997.

[17] H. Gall, M. Jazayeri, and C. Riva. Visualizing software re-
lease histories: the use of color and third dimension. In Pro-
ceedings of the International Conference on Software Main-
tenance (ICSM ’99), pages 99–108. IEEE Computer Society
Press, August 1999.

[18] B. Ganter and R. Wille. Formal Concept Analysis. Springer,
1999.

[19] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: a
Call Graph Execution Profiler. In SIGPLAN Symposium on
Compiler Construction, pages 120–126, 1982.

[20] I. Hsi and C. Potts. Studying the Evolution and Enhance-
ment of Software Features. In Proceedings of the 2000 IEEE
International Conference on Software Maintenance, pages
143–151, 2000.

[21] J. Krajewski. QCR - A methodology for Software Evolution
Analysis. Master’s thesis, Technical University of Vienna,
June 2003.

[22] J. B. Kruskal and M. Wish. Multidimensional Scaling.
Quantitative Applications in the Social Sciences, 11, 1978.

[23] M. Lanza. The Evolution Matrix: Recovering Software Evo-
lution using Software Visualization Techniques. In Proceed-
ings of International Workshop on Principles of Software
Evolution (IWPSE), 2001.

[24] C. Lindig. Compute Concept Lattice from Relation, 1998.
http://www.eecs.harvard.edu/�lindig/src/concepts.html.

[25] C. Lindig and G. Snelting. Begriffliche Wissensverarbeitung.
Methoden und Anwendungen, chapter Formale Begriffsanal-
yse im Software Engineering. Springer, 1999.

[26] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case
studies of open source software development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(3):309–346, 2002.

[27] M. Pinzger, M. Fischer, H. Gall, and M. Jazayeri. Revealer:
A Lexical Pattern Matcher for Architecture Recovery. In
9th Working Conference on Reverse Engineering (WCRE),
October 2002.

[28] E. Pulvermüller, A. Speck, J. O. Coplien, M. D’Hondt, and
W. DeMeuter. Feature Interaction in Composed Systems. In
Feature Interaction in Composed System, 2001.

[29] N. Wilde, J. Gomez, T. Gust, and D. Strasburg. Locating
user functionality in old code. In International Conference
on Software Maintenance, pages 200–205, 1992.

[30] N. Wilde and M. C. Scully. Software Reconnaissance: Map-
ping Program Features to Code. Journal of Software Main-
tenance: Research and Practice, 7(1):49–62, January 1995.

[31] W. E. Wong, S. S. Gokhale, and J. R. Horgan. Quantifying
the closeness between program components and features.
The Journal of Systems and Software, 54(2):87–98, 2000.

10

