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Abstract 
Code-based metrics such as coupling and cohesion are 
used to measure a system’s structural complexity. But 
dealing with large systems—those consisting of several 
millions of lines— at the code level faces many problems. 
An alternative approach is to concentrate on the system’s 
building blocks such as programs or modules as the unit 
of examination. We present an approach that uses infor-
mation in a release history of a system to uncover logical 
dependencies and change patterns among modules. We 
have developed the approach by working with 20 re-
leases of a large Telecommunications Switching System. 
We use release information such as version numbers of 
programs, modules, and subsystems together with change 
reports to discover common change behavior (i.e. change 
patterns) of modules. Our approach identifies logical 
coupling among modules in such a way that potential 
structural shortcomings can be identified and further 
examined, pointing to restructuring or reengineering 
opportunities.  

1 Introduction 
Large software systems are continuously modified and 

increase in size and complexity. After many enhance-
ments and other maintenance activities, modifications 
become hard to do. Therefore, methods and techniques 
are needed to restructure or even reengineer a system into 
a more maintainable form.  

To evaluate the impact of changes, we need to under-
stand the relationships, that is, dependencies among mod-
ules that compose the system. Current methods of identi-
fying dependencies are based on metrics such as coupling 
and cohesion measures [6,17]. These measures identify 
dependencies among modules by the existence of such 
relationships as procedure calls or “include” directives. 
There are two basic issues with these measures:  

 
1. These measures are based on source code which is 

usually very large. In our case study the source code 

consists of 10 million lines of code (MLOC) per 
system release. 

2. Such measures do not reveal all dependencies (e.g. 
dynamic relations). In fact, some dependencies are 
not written down either in documentation or in the 
code. The software engineer just “knows” that to 
make a change of a certain type, he or she has to 
change a certain set of modules. 

We may say that such code-based measures reveal 
syntactic dependencies and what we are really interested 
in is logical dependencies among modules. The purpose 
of this paper is to present an approach to uncover such 
logical dependencies by analyzing the release history of a 
system. Release histories contain a wealth of information 
about the software structure. The task is just to analyze 
them and uncover the information. 

In particular, we can analyze release histories to look 
for patterns of change: are there some modules that are 
always changed together in a release? Are there sequen-
tial dependencies such as if module A is changed in one 
release, module B is changed in the next release? And so 
on. 

We have developed a technique called CAESAR for 
detecting such patterns. We have applied the technique to 
a large system with a 20-release history and identified 
potential dependencies among modules. To validate the 
accuracy of these dependencies identified by our tech-
nique, we examined change reports that contain specific 
change information for a release. The results have shown 
that this approach is promising in identifying “logical” 
couplings among modules across several releases.  

Our technique reveals hidden dependencies not evi-
dent in the source code and identifies modules that are 
candidates for restructuring. The technique requires very 
little data to be kept for each release of a system. Rather 
than dealing with millions of lines of code, it works with 
structural information about programs, modules, and 
subsystems, together with their version numbers and 
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change reports for a release. Such release data is both 
easy to compute and usually available in a company. 

The CAESAR approach is distinguished from metrics-
based approaches by being based on empirical observa-
tion of structural modifications of a system through its 
evolution. The technique leads naturally to an evaluation 
of a system’s architecture and points out potential struc-
tural and architectural enhancements. 

2 Related work 
We describe the evolution of a large Telecommuni-

cation Switching System (TSS) based on information 
about its structure stored in a database. The investigation 
involves 20 system releases that were delivered over a 
period of about two years. These releases were triggered 
by product improvement and new customer demands. 
The data on which our analysis is based consists of in-
formation about the names and version numbers of pro-
grams, modules, and subsystems of the 20 releases. 
Based on the findings in [14,15,23] and our quantitative 
analysis of the TSS described in [7] we again use the 
modules as our unit of investigations, rather than the 
source code. 

Our goal is to identify logical coupling of modules 
that is otherwise hidden in the source code in terms of 
change patterns. If programs change together across 
module or subsystem boundaries, the decomposition 
structure of the application should be reconsidered and 
possibly restructured. Restructuring or reengineering 
methods are well-developed, for example in [1] or [4] or 
[9]. 

Related approaches differ from our work in that they 
mainly focus on a micro-level to analyze the evolution of 
a software system: the source code is analyzed and 
source code metrics are used as indicators of the system’s 
quality and complexity [19]. Other approaches identify 
fault-prone modules using statistical techniques based on 
design metrics [18] and discriminant analysis [12,13]. 
Fault and defect metrics are used for in-process project 
control and for process improvement over time in [4]. 

Coupling and cohesion measures were defined by 
Yourdon and Constantine [24] as a way to measure struc-
tural cohesiveness of a design. The main purpose of such 
measures is to evaluate how maintainable a design and 
resulting implementation are, and to guide improvement 
efforts. The basic idea is that the more dependencies that 
exist among modules, the less maintainable the system is 
because a change in one module will necessitate changes 
in dependent modules. Approaches to measuring module 
dependencies fall into two categories according to the 
information on which it is based:  

• code-level approaches measure coupling based on 
analysis of source code; naturally, such measures 
can only be made after the code has been written. 

• predictive measures try to measure coupling based 
on design information; such approaches attempt to 
evaluate the complexity of the system before the 
code has been written. 

Our approach attempts to measure coupling based on 
empirical analysis of multiple releases of a system. This 
approach is based on observed change behavior of mod-
ules in a system and may be categorized as retrospective. 
Our measures may be used not only as coupling measures 
to guide restructuring efforts but also to validate the ef-
fectiveness of predictive and code-level coupling meas-
ures. 

Other related work analyzes the structure and the ar-
chitecture of software systems. Methods for architectural 
reasoning and assessment as described in [20] or [22] 
could be used for restructuring the architecture. 

Visualization approaches such as SAAM [11], SeeSys 
[2], or SeeSoft [5] deal with the visualization of software 
in different ways by comparing architectures or architec-
tural styles, visualizing statistics associated with the code, 
or visualizing source code information. We focus on a 
macro-level of software evolution by tracking the release 
history of a system. We thereby investigate only struc-
tural information about each release (such as version 
numbers of system modules) but no source code metrics. 

The paper is organized as follows: In Section 3 we de-
scribe the case study to the extent needed to understand 
the evolution observations. Section 4 describes our ap-
proach for identifying logical coupling among modules 
based on release histories. We report on our results in 
Section 5 and draw some conclusions in Section 6. 

3 The case study 
The software examined in this case study is a Tele-

communication Switching System (TSS). Telecommuni-
cation Switches are used to connect telephone lines and 
consist of both hardware and software. Our evaluation 
only concerns the software. The TSS covers a wide range 
of utilization: for example, it can be used as a switch in a 
fixed network, as a large international switch and as a 
switch for mobile telephones. The source code of TSS 
consists of over 10 million lines of code and several 
thousand files.  

The TSS was first shipped in the early 1980s. The im-
plementation of the software of the initial release was 
done in a machine-specific low-level language. After a 
few years this language was gradually replaced. So far, 
many different languages, such as Assembler, C and 
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Basic, have been used to code new parts of the system. 
Presently, the system is being developed using SDL a 
high level language popular in telecommunication sys-
tems. SDL programs are translated into C and then com-
piled with a standard C-compiler.  

 
System

Subsystem A

Module bb

Program 100

Subsystem B Subsystem C

Module ba Module bc

Program 300Program 200  

Figure 1. The software structure of the TSS 

3.1 The structure of the case study 
The software structure of the TSS is a tree hierarchy 

with four levels: the system, subsystem, module, and 
program level. Each level consists of one or more ele-
ments and each element of a certain level is connected to 
one element of the higher level. The system level con-
tains only one element representing the root of the tree. 
The elements in each level are named corresponding to 
the names of the levels. 

Figure 1SEQARABIC shows the generic software 
structure of the TSS. The tree hierarchy limits the visibil-
ity of the code contained in the program level. For in-
stance, an algorithm of a specific program can only be 
seen by another program of the same module. The tree 
hierarchy, however, does not restrict the use of the algo-
rithms at the implementation level. Note that this logical 
structure has been defined after the implementation of 
many releases of the system and that it represents the 
organizational structure rather than the structure of the 
actual implementation. 

Telecommunication switches are products that require 
extensive customization for different markets and appli-
cations. Currently, this customization affects large parts 
of the system, mainly because the customization is per-
formed by making changes directly to the code. Each 
customer receives a specially adapted program. This kind 
of customization makes the system expensive to develop, 
test, and maintain. 

3.2 The Product Release Database (PRDB) 
A system of 10 MLOC is difficult to manage. To help 

simplify the management and to enable the study of the 
structure, a database stores structural information of the 
whole system. The information required to populate the 

product release database (PRDB) is derived directly from 
the source code: during compile time preprocessors ex-
tract the required information and store it. 

The PRDB contains 20 different releases (representing 
releases over 21 months). The requirements for new 
releases vary from functionality enhancements (both 
customer and environment driven) to bug fixes. 

For each release stored, the database contains entries 
for elements at the system, subsystem, module, and pro-
gram level. Systems and programs are characterized by a 
version number. Each system has the version number of 
the specific release. Program version numbers are inde-
pendent from the version number of the system to which 
they are connected. Programs which have been changed 
from one release to the following are identified by an 
incremented version number in the newer release. Fur-
thermore, relations between various elements of the sys-
tem are stored in the PRDB (e.g. Module bc consists of 
Programs 100, 200, and 300). Properties are used to at-
tach additional information to elements or relations, such 
as textual descriptions of an element or the name of the 
developer. Each system release stored in the database 
consists of eight subsystems, 47 to 49 modules, and about 
1500 to 2300 programs. 

4 The CAESAR approach 
In this section, we describe our approach to identify-

ing change patterns among modules and revealing hidden 
dependencies among them. To do that, we define two 
processes that use the Product Release Database (PRDB). 
We give an overview of the two processes here and de-
fine them in detail later in the paper. 

1. The Change Sequence Analysis (CSA) identifies pat-
terns of change. Each change of a module (reflected 
in a change of its version number) is related to the 
system level—with system releases—as shown in 
Table 1. All changes of a module can then be viewed 
on the system level and put together to form a change 
sequence. A change sequence for a module shows the 
releases in which the module has been changed. Such 
change sequences allow to compare different modules 
in terms of their change history and identify common 
“change patterns.” The output of the CSA process is a 
set of change patterns that define a so-called “logical” 
coupling among specific modules. 

2. Change Report Analysis (CRA): To verify the logical 
coupling identified in the CSA process, it is necessary 
to examine change reports as a further source of re-
lease information. A change report describes the rea-
sons, error class, amount and type of a change of a 
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single program with regard to a particular version 
number. The Change Report Analysis looks at the 
change reports for programs with the same change 
sequence. If the change reports identify the same rea-
son for the change, such as the same bug report in 
programs with the same change sequence, then the 
logical coupling identified in the CSA process is veri-
fied. 

4.1 Definitions 
We start by giving some definitions that allow us to 

represent programs and their change patterns abstractly 
as numbers and sequences of numbers. 

Table 1 shows the program Pi which occurs from sys-
tem release 3 through 8. The first row shows the version 
number of Pi as it appears in the PRDB. For our analysis, 
the important point about the program is the release num-
ber(s) in which it is changed. In this case, from the ver-
sion numbers in the first row, we can see that the 
program is changed in releases 3 and 5. This information 
is shown in the second row. 

 
System Release 1 2 3 4 5 6 7 8 9
Pi version no.   1.1 1.1 1.3 1.3 1.3 1.3  
Pi change se-
quence 

  3  5     

Table 1. Program Pi’s version numbers and represen-
tation as change sequence 

• A change sequence is defined on the program level 
and is an n-tuple <1 2..n> of those release numbers 
in which the program changes its version number. 
A program change sequence contains all system 
release numbers in which the program changes 
(e.g. in Table 1 <3 5> denotes one change of Pi in 
release 5).  

• A subsequence (SUB) is a contiguous part of a se-
quence.  

• Changes are represented by a sequence or subse-
quence.  

• A Change Report (CR) is a report of a version 
number change of a program. It contains all de-
scriptions of changes of the programs involved. 
There exists different types of changes and differ-
ent types of error classes. 

4.2 The Change Sequence Analysis (CSA) 
The Change Sequence Analysis allows to reason about 

“logical coupling” among different elements (i.e. pro-

grams or modules). Logical coupling refers to observed 
identical change behavior of different elements during 
system evolution. The main principle of CSA is to repre-
sent each change of a version number of an element on 
the system level as a system release change. This abstract 
way of representation is chosen to be independent of the 
level on which the CSA is performed. Therefore it is 
possible to compare the behavior of different decomposi-
tion levels during system evolution.  

This paper focuses on the level of programs because 
of the following TSS-specific reason: If a program 
changes its version number, the containing module must 
also change its version number. A version of a module 
defines the version of a program belonging to it. The 
module level is not representative since the modules 
contain all the changes performed on the level of the 
programs. This results in a high number of changes for 
each of the modules. Therefore, we focus on the level of 
the programs viewed on the level of subsystems. Since 
this level consists of only 8 different subsystems it is a 
good way to represent the changes of the different pro-
grams.  

Two kinds of coupling are considered in the CSA 
process: 

• System coupling represents relationships among dif-
ferent subsystems via sequences 

• Sequence coupling represents relationships among 
different sequences via subsystems 

 
Both of them use subsequences to represent a specific 

behavior in a certain part of the system evolution. In the 
following, we discuss the two different couplings in 
terms of the TSS. 

4.2.1 Coupling among subsystems 

This coupling represents subsystems related via dif-
ferent sequences. Since the evaluations are done on the 
version numbers of the programs, each subsystem repre-
sents a specific program to which it is related. The sub-
system level has a compact representation since there are 
a fixed number of subsystems (for TSS: 8). Subsystems 
are coupled if they are related to the same sequence and 
contain the same defined subsequence. Intuitively, if two 
subsystems are related to the same subsequence, it means 
that the subsystems were changed in the same releases. 

After listing the change sequences for all programs, 
different subsequences are compared against all se-
quences. If two or more sequences contain the same sub-
sequence, we postulate a logical coupling among those 
sequences and the associated programs and subsystems. 
Figure 2 is a simplified model of the TSS with respect to 
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a particular change sequence. We have changed the sub-
system names to hide the identity of the real system. Each 
subsystem is represented by a circle. The different styles 
of lines represent the different amount of changes be-
longing to the sequences. The sequence name 
Sk=<c1 c2 .. cn> represents the changes ci in which this 
sequence occurs. Figure 2 shows that, except for subsys-
tem F, each of the subsystems includes the subsequence 
SUB1=<1 2 4>. It further depicts that subsystem G has no 
coupling to any other subsystem; its only coupling is 
internal to its own programs with respect to the change 
sequence SUB1.  

 

SUB1=<1  2  4>

C

G

B

D

A

F

2 changes
3 changes
4 changes

E

H

 

Figure 2. Coupling among subsystems 

Subsystem A shows existing coupling inside the same 
block which is depicted as a self reference. Therefore this 
coupling refers to at least two different programs belong-
ing to the same subsystem as shown in Table 2 (E.g., 
‘A.ac.144’ denotes program 144 in module ac of subsys-
tem A). 

SUB1=<1 2 4> 
A.ac.144 1 2 4 6 19 20 
A.ad.200 1 2 4 6 19 20 
A.ad.201 1 2 4 6 19 20 

Table 2. Coupling among modules (ac, ad) within 
subsystem A for SUB1 

In Figure 2, subsystems A, C, and E are seen to be 
coupled via a sequence of 3 changes with every sequence 
including SUB1 as subsequence. All three subsystems 
include programs related to the sequence S40=<1 2 4 7> 
with 3 changes (S40 includes the subsequence SUB1=<1 
2 4>).  

In general, there could exist many sequences that in-
clude SUB1 and represent 3 changes. Each line in Figure 
2 represents the fact that there is one or more sequences 
shared by the related subsystems. To see how many 
shared sequences are represented by each line, we have 
to check the sequence coupling (see Section 4.2.2). 

Figure 2 further shows that subsystems D and H are 
also coupled via a sequence of 3 changes: sequence 
S49=<1 2 4 6> is related to several programs of the two 
subsystems D and H; this fact is represented in a line that 
“logically” couples D and H. 

Subsystems are coupled via sequences that can repre-
sent different amounts of changes. Let us consider the 
example shown in Table 3. 

 
SUB2=<1 2 3 4 6 7 9 10 14> 

A.aa.111 1 2 3 4 6 7 9 10 14 17 19 
B.ba.222 1 2 3 4 6 7 9 10 14 16 18 

Table 3. Coupling among subsystems A and B via 
SUB2 

Subsequence SUB2 represents 8 changes. There are 
some programs with change sequences larger than 8 
which include SUB2 as a subsequence. An example is 
given in Table 3, in which program 111 of subsystem A 
and program 222 of subsystem B include SUB2. As a 
result of this, subsystem A and B are “logically” coupled 
via subsequence SUB2. Intuitively, this means that in 
eight different releases, these programs were both 
changed.  

Subsequences are used to compare different blocks. 
Short subsequence may be shared by programs coinci-
dentally. But the longer the subsequence that is shared 
among programs, the higher is the probability of coupling 
among the programs. If there exists a long subsequence 
included in many different change sequences, it can be 
assumed that the programs are dependent on each other. 
We, therefore, look for long sequences in the CSA proc-
ess.  

If commonalities via subsequences are detected, then 
logical coupling among different programs and, as a 
consequence, among different subsystems exists. This is 
a first step in identifying the same change behavior dur-
ing system evolution based on different levels and 
blocks. To determine whether or not this logical coupling 
represents real dependencies, it is necessary to inspect the 
change reports via the change report analysis (CRA). 

4.2.2 Coupling among sequences 
This coupling represents sequences which connect dif-

ferent subsystems. The sequences are subdivided into 
groups of different amount of changes which belong to 2, 
3, .., 9, and >9 changes. The commonality among se-
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quences is always a subsequence that is included in each 
of the sequences such as SUB1=<1 2 4> in Figure 3. 

 

S0-S30
S31-S59
S60-S74a
S75-S79
S80-S87
S89,S90,S92a
S91,S92
S94,S95
> S96

2 changes
3 changes
4 changes

6 changes
5 changes

7 changes
8 changes
9 changes

>9 changes

SUB1=<1 2 4>

S5

S31
S60

S64

S73 S67

S58

S40

S42
S49

S59

S84

Subsystem A
Subsystem B
Subsystem C
Subsystem D
Subsystem E

Subsystem G
Subsystem F

Subsystem H

 
Figure 3. Coupling among sequences 

Figure 4 depicts coupling among sequences. The 
boxes represent sequences and the different styles of 
lines represent the subsystems of TSS. In Figure 3, se-
quence S5 belongs to the group of 2 changes. The dotted 
line in S84, for example, indicates that this sequence is 
only referred to by change sequences of programs in 
subsystem G.  

Let us examine the sequences S5=<1 2 4> and 
S40=<1 2 4 7>. S5 is connected by 5 different lines 
which indicate 5 different subsystems (A, B, D, E, and H, 
see also Table 4). Both S5 and S40 are connected to 
subsystem E represented as a dotted line. Sequence S84, 
which belongs to the sequence group of 6 changes and 
represents coupling within its sequence, is not related to 
any other sequence but points to subsystem G. 

Table 4 shows sequence S5=SUB1=<1 2 4> and the 
coupled programs and subsystems in more detail. 

 
S5=<1 2 4> = SUB1 

A.aa.005 1 2 4 
B.ba.098 1 2 4 
D.da.307 1 2 4 
D.da.309 1 2 4 
E.ec.330 1 2 4 
H.ha.377 1 2 4 
H.hb.390 1 2 4 

Table 4. Coupling among sequence S5 

Analyzing the behavior of sequences reveals which 
subsystems are related to which sequence while observ-

ing a specific subsequence. This supports the search for a 
specific behavior—such as SUB1=<1 2 4>—where 
changes in different subsystems were done in system 
releases 2 and 4.  

The coupling among sequences adds more detail to the 
logical coupling among subsystems and identifies the 
specific programs and the specific releases in which the 
subsystems exhibited exactly the same change pattern. 

4.3 Change Report Analysis (CRA) 
During the maintenance phases, once a failure is re-

ported and its cause determined, the problem is fixed by 
one or more changes. These changes may include modi-
fications to one or more of the development products, 
including the specification, design, code, test plans, test 
data or documentation. Change reports are used to record 
the changes and track the products affected by them. A 
typical change report may look as follows [6]: 

 
Change report 
Location: identifier of document or module change 
Timing: when change was made 
Symptom: type of change 
End result: success for change, as evidenced by regres-

sion or other testing 
Mechanism: how and by whom change was performed 
Cause: corrective, adaptive, preventive, or perfective 
Severity: impact on rest of system, sometimes as indi-

cated by an ordinal scale 
Cost: time and effort for change implementation 

and test 

We use the change reports for programs to verify 
whether the logical coupling among different programs 
represents real dependencies among those programs. A 
change report contains a report of the type, error class, 
kind and number of a change done in a program. Logical 
coupling represents a real dependency if the change re-
ports for the different programs include significant simi-
larities, for example, they reference the same bug report. 

4.3.1 Description of a change report 
In general, a program has several change reports since 

each belongs to a change from one version number to 
another. We consider the following change report of 
program 111 (with comments included): 

 
 
 
 
 
 

Ver 2.4 — 96/03/12 10:10:07 
TSS---PROGRAM CHANGE DESCRIPTION 
ELEMENT NAME: Program 111 2.3 --> 2.4  
CHANGED BY: John DOE 
CHANGES as follows: 
 
CHANGE NR: 1 
CHANGE TYPE: B   // bug fix 
REFERENCE: BR 4711  // reference to a bug report number 
ERROR CLASS: A   // i.e. operation in working state 
DESCRIPTION: hanging of the circuits in environment xy.  
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The change reports of the TSS case study refer to 3 
main types: “Further Development (FD)” which is di-
vided into several parts such as FD based on system 
specification, development of technology (software and 
hardware) and so on. The second is a general “Change” 
such as optimizing or improvement. The third is a correc-
tion of an error which refers to a specific “Bug Report 
(BR).” For our case study it was only important to differ-
entiate between these three types although some more 
types exist for the TSS. 

For the TSS case study we use the terms with num-
bers, such as FD1 or C5 referring to a specific subtype of 
change. To completely identify whether two changes in 
two different change reports refer to the same change, we 
also have to inspect the change-reports' comments which 
usually are not categorized in great detail. 

4.3.2 Analysis steps 
To analyze the change reports we have to inspect the 

version numbers of the programs together with the 
change sequence as shown in Table 5. 

 

  system releases 
  1 2 3 4 5 6 7 
S28 A.aa.111    2.3 2.3 2.4 2.6 
     4  6 7 

Table 5. Analyzed program for a change report 

For every change of a program (reflected in its change 
sequence), the corresponding change report(s) are identi-
fied and analyzed. The change reports that describe a 
new version of a program are then listed as shown in 
Figure 5. 

 

 4  6  7  

Program 111 2.3 BR 4711 2.4 FD 1 2.6  

Figure 4. Change history of Program 111 

In Figure 4, Program 111 occurred in system release 4 
with version number 2.3. The first change was done in 
system release 6 resulting in version number 2.4. The 
change was a bug fix according to the specific bug report 
BR 4711. 

The second change occurred from system release 6 to 
7 as a change from version number 2.4 to 2.6. This 

change is of type “FD 1” and refers to a specific “further 
development” change. 

Sometimes a program has several changes until its 
version is included in a specific system release as shown 
in Figure 6. 

 

10  11  

Program 222 6.1 BR 1234 6.4  
  BR 1235   
  BR 1239   

Figure 5. Change history of Program 222 

Figure 5 depicts that 3 changes occurred between sys-
tem releases 10 and 11. Three bugs were fixed which 
refer to the bug reports BR 1234 (from version 6.1 to 
6.2), BR 1235 (from version 6.2 to 6.3), and BR 1239 
(from version 6.3 to 6.4). After fixing these bugs, the 
final version number of Program 222 (i.e. 6.4) was in-
cluded in system release 11.  

Change reports are necessary to determine whether the 
logical coupling identified in the CSA process indicates 
real dependencies or just coincidental changes. The next 
section examines some programs which have important 
commonalities in those change reports. 

4.3.3 An example 
Let us assume that after analyzing the system there 

was logical coupling found with the subsequence 
SUB1=<2 4 6 7>. Four different programs including this 
subsequence caused the logical coupling. These four 
programs are related to two different subsystems A and B 
as shown in Figure 6. By examining the change reports of 
those 4 programs we see that the logical coupling via the 
subsequence SUB1 results in the following behavior: 

 

SUB1 =<2 4 6 7>

BR 1443

FD 1

FD 2

FD 3

system releases

A.ab.4

A.ac.10

B.be.20

B.bh.27

2 4 5 61 7 8

 
Figure 6. Programs, change reports, and commonal-

ities 

If two different programs have the same FD-number 
they are dependent on each other in some way. But if two 
or several programs refer to the same bug report then 
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they have a strong dependency because the same bug had 
to be fixed. 

 In Figure 7, FD1 was done in program 4 from system 
releases 1 to 2 and in program 27 from system release 6 
to 7. This shows that in program 27 the same change was 
done 5 releases later than the first development of pro-
gram 4 happened. 

Inspecting the programs 4, 10, and 20 revealed a 
strong dependency: All three programs have the same 
changes from system release 2 to 4 and from 6 to 7. All 
of them refer to the same bug report number BR1443. In 
all of the three programs the same error occurred which 
had to be fixed. From system release 6 to 7, the same bug 
report number occurred again for the examined programs. 
Since one bug report refers to a specific error, one possi-
ble answer for this is that the bug was not fixed properly 
in all affected parts of the system from system release 2 
to 4. Therefore, in system release 6 the same bug oc-
curred again and had to be fixed. 

4.4 Résumé 
The CSA process locates potential couplings and then 

analyzes in more detail the changes done in a program. 
With CRA we can verify logical coupling through de-
scriptions in change reports. If the change was a bug fix 
and several programs refer to a specific bug report num-
ber, this change verifies a real logical coupling. Other 
types of changes (e.g. further development etc.) can be 
analyzed for commonalities accordingly. For more details 
about the specific examples see [10]. 

5 Results 
In our case study, we examined different subse-

quences to identify change patterns in different programs 
and subsystems. The length of a subsequence is impor-
tant when analyzing the coupling. As a consequence, our 
technique detects a stronger logical coupling of sub-
systems (or programs), if they are coupled via a long 
subsequence. 

In general, we discovered that in accordance to our 
findings in [7], many changes were performed in system 
releases 1, 2, 4, 5, 7, and 11. This corresponds to the 
logical coupling among the different subsystems. For 
example, 31 programs refer to the same change sequence. 

Considering the size of each subsystem, subsystem C 
was continuously growing over the 20 releases (for de-
tails refer to [7]), but this fact is not reflected in a high 
logical coupling with other subsystems. The potential for 
restructuring is, therefore, within subsystem C and its 
modules. The structural shortcoming is local in terms of 
subsystems but with a high interrelationship among mod-

ules of subsystem C. From the CSA and the CRA we 
have identified those modules and programs that should 
undergo restructuring or even reengineering.  

6 Conclusions and future work 
We have presented a new way to analyze large soft-

ware systems with millions of lines of source code: build-
ing on the quantitative analysis of a Telecommunication 
Switching System performed in [7], this paper considers 
logical attributes of the TSS. Such large systems often 
reach a high level of complexity and any extension or 
adaptation causes a large maintenance effort. Therefore, 
it is necessary to examine the structure of the system 
concerning its architecture and the dependencies of the 
different modules and subsystems. Based on these re-
sults, further maintenance activities can be estimated 
more accurately in terms of time needed and software 
parts affected. 

We developed a technique called CAESAR for detect-
ing change patterns and applied it to a large Telecommu-
nication Switching System with a 20-release history. We 
identified potential dependencies among modules, and 
validated these potential dependencies by examining 
change reports that contain specific change information 
for a release. The results have shown that this approach is 
promising in identifying such “logical” couplings among 
modules across several releases.  

Our technique reveals hidden dependencies not evi-
dent in the source code, identifies modules that should 
undergo restructuring, and is based on minimal amount 
of data that must be kept about each release. Rather than 
dealing with millions of lines of code we use structural 
information about programs, modules, and subsystems, 
together with their version numbers and change reports 
for a release. Such release data is both easy to compute 
and usually available in a company. 

Although our results are preliminary, the use of 
CAESAR was able to uncover phenomena such as bugs 
being fixed in one system release and “re-emerging” a 
couple of releases later to be fixed in other parts of the 
system, and we were able to verify couplings identified 
by CSA using CRA. Our results indicate that such retro-
spective analysis is a valuable complement to code-based 
and predictive analyses that are commonly practiced 
today. 

The insights gained from the case study allow us to 
define those data that are required to detect logical cou-
pling in very large systems: change sequences, subsystem 
and sequence couplings together with those change re-
ports that are referred to in the version changes of mod-
ules and programs.  
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So far, we have used only simple tools in our study. In 
the future, we plan to add a visualization capability to the 
release database to enable a maintenance engineer to 
view the identified relationships with 3-dimensional 
graphs (as presented in [21]) and to navigate across the 
releases and the discovered module and subsystem de-
pendencies. 
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