
Software Evolution Observations Based on Product Release History
By Harald Gall and Mehdi Jazayeri and Rene Kosch and Georg Trausmuth

Thoughts/Things of Note:

Implies that a decrease in both growth and change rates in a system imply satisfactory
evolution meaning good software practice?

I would argue the assumption of stability based on the information presented without
more detail. Growth and change rates if I understand correctly were based on size
comparisons: if x number of developers can make y number of changes consistently to a
project then as the size of the project grows these numbers will diminish as a matter of
course, though the changes are constant. It may be that I don’t understand the numbers
though.

A course grained analysis is a simple approach, which is appealing. Should allow for
almost full-automation of the information gathering part of the process with only a
limited intervention by a domain expert to give general knowledge about the structure.

Summary:

This paper is an examination of the changes between versions of a software product. It
focuses on the code itself in relation with the features added in an attempt to identify
potential shortcoming of the development process based in analysis of the statistics
gathered.

Rather than focus on the lines of code this analysis is based on the modules and program
modified for a broader or more coarse-grained approach. The result is a focus on the
structural changes between releases rather than on any specific source code metrics.

The case study was done on a Telecommunication Switching System (TSS) having more
than 10 million lines of code. It has a four level logical tree structure: the system
comprised of subsystems, which are comprised of modules, which are comprised of
programs. A Product Release Database was created to store the structural information,
which was extracted by pre-preocessors at run-time for populating the DB. The PRDB
had entries for each part of the system based on the tree structure along with the relevant
version information. Relations between modules for also stored in the PRDB.
The following relevant characteristics from the PRDB were then compared through time
based on release versions:

• the size of each system, subsystem and module(defined as the number of
programs contained within)

• the changing rate which is the percentage of programs in a system, subsystem or
module which changed from one release to the next

• the growing rate – programs added in a system, subsystem or module from one
release to another

Observations that were produced:
• the size of the system is growing linearly
• there was no correlation comparing the changing and growing rates for each

release
This prompted the conclusion that due to nothing dramatic showing in the charts, this was
evidence of satisfactory evolution.

A subsystem with the largest growth and change rates was examined in detail to see of
these characteristics made it a candidate for re-factoring. Examing the modules in the
subsystem in detail in terms of growth/change showed that one of the three modules was
variations much larger than the other two, and was therefore assumed to be a candidate
for re-design.

General observations in the conclusion were that as time progressed the system became
‘stable’ meaning that there was diminishing values in the growth and change rates.

