
The 1981 ACM Turing Award Lecture
Delivered at ACM '81, Los Angeles, California, November 9, 1981

The 1981 A(2M Turing Award was presented to Edgar F. Codd, an IBM
Fellow of the San Jose Research Laboratory, by President Peter Denning on
November 9, 1981 at the A(2M Annual Conference in Los Angeles, California.
It is the Association's foremost award for technical contributions to the com-
puting community.

(2odd was selected by the A(2M General Technical Achievement Award
(2ommittee for his "fundamental and continuing contributions to the theory
and practice of database management systems." The originator of the relational
model for databases, (2odd has made further important contributions in the
development of relational algebra, relational calculus, and normalization of
relations.

Edgar F. (2odd joined IBM in 1949 to prepare programs for the Selective
Sequence Electronic Calculator. Since then, his work in computing has encom-
passed logical design of computers (IBM 701 and Stretch), managing a computer
center in Canada, heading the development of one of the first operating systems
with a general mult iprogramming capability, contributing to the logic of self-
reproducing automata, developing high level techniques for software specifica-

tion, creating and extending the relational approach to database management, and developing an English analyzing
and synthesizing subsystem for casual users of relational databases. He is also the author of Cellular Automata, an early
volume in the A(2M Monograph Series.

(2odd received his B.A. and M.A. in Mathematics from Oxford University in England, and his M.Sc. and Ph.D.
in (2omputer and Communication Sciences from the University of Michigan. He is a Member of the National
Academy of Engineering (USA) and a Fellow of the British Computer Society.

The A(2M Turing Award is presented each year in commemoration of A. M. Turing, the English mathematician
who made major contributions to the computing sciences.

Relational Database: A Practical Foundation for
Productivity

E. F. C o d d

I B M S a n J o s e R e s e a r c h L a b o r a t o r y

It is well known that the growth in demands from end
users for new applications is outstripping the capability
of data processing departments to implement the corre-
sponding application programs. There are two comple-
mentary approaches to attacking this problem (and both
approaches are needed): one is to put end users into
direct touch with the information stored in computers;
the other is to increase the productivity of data process-
ing professionals in the development of application pro-
grams. It is less well known that a single technology,

Author's Present Address: E. F. Codd, IBM Research Laboratory,
5600 Cottle Road, San Jose, CA 95193.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0001-0782/82/0200-0109 $00.75

109

relational database management, provides a practical
foundation for both approaches. It is explained why this
is so.

While developing this productivity theme, it is noted
that the time has come to draw a very sharp line between
relational and non-relational database systems, so that
the label "relational" will not be used in misleading ways.
The key to drawing this line is something called a
"relational processing capability."

CR Categories and Subject Descriptors: H.2.0 [Database
Management]: General; H.2.1 [Database Management]:
Logical Design-data models; H.2.4 [Database Manage-
ment]: Systems

General Terms: Human Factors, Languages

additional Key Words and Phrases: database, relational
database, relational model, data structure, data manip-
ulation, data integrity, productivity

Communications February 1982
of Volume 25
the ACM Number 2

1. Introduction

It is generally admitted that there is a productivity
crisis in the development of "running code" for com-
mercial and industrial applications. The growth in end
user demands for new applications is outstripping the
capability of data processing departments to implement
the corresponding application programs. In the late six-
ties and early seventies many people in the computing
field hoped that the introduction of database manage-
ment systems (commonly abbreviated DBMS) would
markedly increase the productivity of application pro-
grammers by removing many of their problems in han-
dling input and output files. DBMS (along with data
dictionaries) appear to have been highly successful as
instruments of data control, and they did remove many
of the file handling details from the concern of applica-
tion programmers. Why then have they failed as pro-
ductivity boosters?

There are three principal reasons:

(1) These systems burdened application programmers
with numerous concepts that were irrelevant to their data
retrieval and manipulation tasks, forcing them to think
and code at a needlessly low level of structural detail (the
"owner-member set" of CODASYL DBTG is an out-
standing example1);

(2) No commands were provided for processing mul-
tiple records at a time--in other words, DBMS did not
support set processing and, as a result, programmers were
forced to think and code in terms of iterative loops that
were often unnecessary (here we use the word "set" in
its traditional mathematical sense, not the linked struc-
ture sense of CODASYL DBTG);

(3) The needs of end users for direct interaction with
databases, particularly interaction of an unanticipated
nature, were inadequately recognized--a query capabil-
ity was assumed to be something one could add on to a
DBMS at some later time.

Looking back at the database management systems
of the late sixties, we may readily observe that there was
no sharp distinction between the programmer's (logical)
view of the data and the (physical) representation of data
in storage. Even though what was called the logical level
usually provided protection from placement expressed in
terms of storage addresses and byte offsets, many stor-
age-oriented concepts were an integral part of this levels
The adverse impact on development productivity of
requiring programmers to navigate along access paths to

1 The crux o f the problem with the the C O D A S Y L DBTG owner-
member set is that it combines into one construct three ortbogonal
concepts: one- to-many relationship, existence dependency, and a user-
visible linked structure to be traversed by application programs. It is
the last o f these three concepts that places a heavy and unnecessary
navigation burden on application programmers. It also presents an
insurmountable obstacle for end users.

110

reach the target data (in some cases having to deal
directly with the layout of data in storage and in others
having to follow pointer chains) was enormous. In ad-
dition, it was not possible to make sight changes in the
layout in storage without simultaneously having to revise
all programs that relied on the previous structure. The
introduction of an index might have a similar effect. As
a result, far too much manpower was being invested in
continual (and avoidable) maintenance of application
programs.

Another consequence was that installation of these
systems was often agonizingly slow, due to the large
amount of time spent in learning about the systems and
in planning the organization of the data at both logical
and physical levels, prior to database activation. The aim
of this preplanning was to "get it right once and for all"
so as to avoid the need for subsequent changes in the
data description that, in turn, would force coding changes
in application programs. Such an objective was, of
course, a mirage, even if sound principles for database
design had been known at the time (and, of course, they
were not).

To show how relational database management sys-
tems avoid the three pitfalls cited above, we shall first
review the motivation of the relational model and discuss
some of its features. We shall then classify systems that
are based upon that model. As we proceed, we shall
stress application programmer productivity, even though
the benefits for end users are just as great, because much
has already been said and demonstrated regarding the
value of relational database to end users (see [23] and
the papers cited therein).

2. Motivation

The most important motivation for the research work
that resulted in the relational model was the objective of
providing a sharp and clear boundary between the logical
and physical aspects of database management (including
database design, data retrieval, and data manipulation).
We call this the data independence objective.

A second objective was to make the model structur-
ally simple, so that all kinds of users and programmers
could have a common understanding of the data, and
could therefore communicate with one another about the
database. We call this the communicability objective.

A third objective was to introduce high level language
concepts (but not specific syntax) to enable users to
express operations upon large chunks of information at
a time. This entailed providing a foundation for set-
oriented processing (i.e., the ability to express in a single
statement the processing of multiple sets of records at a
time). We call this the set-processing objective.

There were other objectives, such as providing a
sound theoretical foundation for database organization
and management, but these objectives are less relevant
to our present productivity theme.

Communicat ions February 1982
of Volume 25
the ACM N u m b e r 2

3. The Relational Model

To satisfy these three objectives, it was necessary to
discard all those data structuring concepts (e.g., repeating
groups, linked structures) that were not familiar to end
users and to take a fresh look at the addressing of data.

Positional concepts have always played a significant
role in computer addressing, beginning with plugboard
addressing, then absolute numeric addressing, relative
numeric addressing, and symbolic addressing with arith-
metic properties (e.g., the symbolic address A + 3 in
assembler language; the address X(I + l, J - 2) of an
element in a Fortran, Algol, or PL/ I array named X). In
the relational model we replace positional addressing by
totally associative addressing. Every datum in a rela-
tional database can be uniquely addressed by means of
the relation name, primary key value, and attribute
name. Associative addressing of this form enables users
(yes, and even programmers also!) to leave it to the
system to (1) determine the details of placement of a new
piece of information that is being inserted into a database
and (2) select appropriate access paths when retrieving
data.

All information in a relational database is represented
by values in tables (even table names appear as character
strings in at least one table). Addressing data by value,
rather than by position, boosts the productivity of pro-
grammers as well as end users (positions of items in
sequences are usually subject to change and are not easy
for a person to keep track of, especially if the sequences
contain many items). Moreover, the fact that program-
mers and end users all address data in the same way goes
a long way to meeting the communicability objective.

The n-ary relation was chosen as the single aggregate
structure for the relational model, because with appro-
priate operators and an appropriate conceptual represen-
tation (the table) it satisfies all three of the cited objec-
tives. Note that an n-ary relation is a mathematical set,
in which the ordering of rows is immaterial.

Sometimes the following questions arise: Why call it
the relational model? Why not call it the tabular model?
There are two reasons: (1) At the time the relational
model was introduced, many people in data processing
felt that a relation (or relationship) among two or more
objects must be represented by a linked data structure
(so the name was selected to counter this misconception);
(2) Tables are at a lower level of abstraction than rela-
tions, since they give the impression that positional (ar-
ray-type) addressing is applicable (which is not true of
n-ary relations), and they fail to show that the informa-
tion content of a table is independent of row order.
Nevertheless, even with these minor flaws, tables are the
most important conceptual representation of relations,
because they are universally understood.

Incidentally, if a data model is to be considered as a
serious alternative for the relational model, it too should
have a clearly defined conceptual representation for
database instances. Such a representation facilitates

111

thinking about the effects of whatever operations are
under consideration. It is a requirement for programmer
and end-user productivity. Such a representation is
rarely, if ever, discussed in data models that use concepts
such as entities and relationships, or in functional data
models. Such models frequently do not have any oper-
ators either! Nevertheless, they may be useful for certain
kinds of data type analysis encountered in the process of
establishing a new database, especially in the very early
stages of determining a preliminary informal organiza-
tion. This leads to the question: What is a data model?

A data model is, of course, not just a data structure,
as many people seem to think. It is natural that the
principal data models are named after their principal
structures, but that is not the whole story.

A data model [9] is a combination of at least three
components:

(1) A collection of data structure types (the database
building blocks);

(2) A collection of operators or rules of inference,
which can be applied to any valid instances of the data
types listed in (1), to retrieve, derive, or modify data
from any parts of those structures in any combinations
desired;

(3) A collection of general integrity rules, which im-
plicitly or explicitly define the set of consistent database
states or changes of state or both--these rules are general
in the sense that they apply to any database using this
model (incidentally, they may sometimes be expressed
as insert-update-delete rules).

The relational model is a data model in this sense,
and was the first such to be defined. We do not propose
to give a detailed definition of the relational model
here--the original definition appeared in [7], and an
improved one in Secs. 2 and 3 of [8]. Its structural part
consists of domains, relations of assorted degrees (with
tables as their principal conceptual representation), at-
tributes, tuples, candidate keys, and primary keys. Under
the principal representation, attributes become columns
of tables and tuples become rows, but there is no notion
of one column succeeding another or of one row suc-
ceeding another as far as the database tables are con-
cerned. In other words, the left to right order of columns
and the top to bottom order of rows in those tables are
arbitrary and irrelevant.

The manipulative part of the relational model consists
of the algebraic operators (select, project, join, etc.) which
transform relations into relations (and hence tables into
tables).

The integrity part consists of two integrity rules: entity
integrity and referential integrity (see [8, 11] for recent
developments in this latter area). In any particular ap-
plication of a data model it may be necessary to impose
further (database-specific) integrity constraints, and
thereby define a smaller set of consistent database states
or changes of state.

In the development of the relational model, there has
always been a strong coupling between the structural,

Communications February 1982
of Volume 25
the ACM Number 2

manipulative, and integrity aspects. If the structures are
defined alone and separately, their behavioral properties
are not pinned down, infinitely many possibilities present
themselves, and endless speculation results. It is therefore
no surprise that attempts such as those of CODASYL
and ANSI to develop data structure definition language
(DDL) and data manipulation language (DML) in sep-
arate committees have yielded many misunderstandings
and incompatibilities.

4. The Relational Processing Capability

The relational model calls not only for relational
structures (which can be thought of as tables), but also
for a particular kind of set processing called relational
processing. Relational processing entails treating whole
relations as operands. Its primary purpose is loop-avoid-
ance, an absolute requirement for end users to be pro-
ductive at all, and a clear productivity booster for appli-
cation programmers.

The SELECT operator (also called RESTRICT) of
the relational algebra takes one relation (table) as oper-
and and produces a new relation (table) consisting of
selected tuples (rows) of the first. The PROJECT oper-
ator also transforms one relation (table) into a new one,
this time however consisting of selected attributes (col-
umns) of the first. The EQUI-JOIN operator takes two
relations (tables) as operands and produces a third con-
sisting of rows of the first concatenated with rows of the
second, but only where specified columns in the first and
specified columns in the second have matching values.
If redundancy in columns is removed, the operator is
called NATURAL JOIN. In what follows, we use the
term "join" to refer to either the equi-join or the natural
join.

The relational algebra, which includes these and
other operators, is intended as a yardstick of power. It is
not intended to be a standard language, to which all
relational systems should adhere. The set-processing ob-
jective of the relational model is intended to be met by
means of a data sublanguage 2 having at least the power
of the relational algebra without making use of iteration
or recursion statements.

Much of the derivability power of the relational
algebra is obtained from the SELECT, PROJECT, and
JOIN operators alone, provided the JOIN is not subject
to any implementation restrictions having to do with
predefinition of supporting physical access paths. A sys-
tem has an unrestricted join capability if it allows joins to
be taken wherein any pair of attributes may be matched,
providing only that they are defined on the same domain
or data type (for our present purpose, it does not matter

2 A data sublanguage is a specialized language for database man-
agement, supporting at least data definition, data retrieval, insertion,
update, and deletion. It need not be computationally complete, and
usually is not. In the context of application programming, it is intended
to be used in conjunction with one or more programming languages.

112

whether the domain is syntactic or semantic and it does
not matter whether the data type is weak or strong, but
see [10] for circumstances in which it does matter).

Occasionally, one finds systems in which join is
supported only if the attributes to be matched have the
same name or are supported by a certain type of pre-
declared access path. Such restrictions significantly im-
pair the power of the system to derive relations from the
base relations. These restrictions consequently reduce
the system's capability to handle unanticipated queries
by end users and reduce the chances for application
programmers to avoid coding iterative loops.

Thus, we say that a data sublanguage L has a rela-
tional processing capability if the transformations speci-
fied by the SELECT, PROJECT, and unrestricted JOIN
operators of the relational algebra can be specified in L
without resorting to commands for iteration or recursion.
For a database management system to be called rela-
tional it must support:

(1) Tables without user-visible navigation links be-
tween them;

(2) A data sublanguage with at least this (minimal)
relational processing capability.

One consequence of this is that a DBMS that does
not support relational processing should be considered
non-relational. Such a system might be more appropri-
ately called tabular, providing that it supports tables
without user-visible navigation links between tables. This
term should replace the term "semi-relational" used in
[8], because there is a large difference in implementation
complexity between tabular systems, in which the pro-
grammer does his own navigation, and relational sys-
tems, in which the system does the navigation for him,
i.e., the system provides automatic navigation.

The definition of relational DBMS given above in-
tentionally permits a lot of latitude in the services pro-
vided. For example, it is not required that the full
relational algebra be supported, and there is no require-
ment in regard to support of the two integrity rules of
the relational model (entity integrity and referential in-
tegrity). Full support by a relational system of these
latter two parts of the model justifies calling that system
fully relational [8]. Although we know of no systems that
qualify as fully relational today, some are quite close to
qualifying, and no doubt will soon do so.

In Fig. 1 we illustrate the distinction between the
various kinds of relational and tabular systems. For each
class the extent of shading in the S box is intended to
show the degree of fidelity of members of that class to
the structural requirements of the relational model. A
similar remark applies to the M box with respect to the
manipulative requirements, and to the I box with respect
to the integrity requirements.

m denotes the minimal relational processing capabil-
ity. c denotes relational completeness (a capability cor-
responding to a two-valued first order predicate logic
without nulls). When the manipulation box M is fully
shaded, this denotes a capability corresponding to the

Communicat ions February 1982
of Volume 25
the ACM Number 2

Fig. 1. Classification of DBMS. 5. The Uniform Relational Property

S = Structural
M = Manipulative
I = Integrity

Tabular
(previously called
semi-relational)

Minimally
Relational

aa

09

Relationally
.~ Complete

o

Fully
Relational

c = Relational completeness
m = Minimal relational

processing capability

M

? [,
M

M

s ~ ? 1

M

full relational algebra defined in [8] (a three-valued
predicate logic with a single kind of null). The question
mark in the integrity box for each class except the fully
relational is an indication of the present inadequate
support for integrity in relational systems. Stronger sup-
port for domains and primary keys is needed [10], as
well as the kind of facility discussed in [14].

Note that a relational DBMS may package its rela-
tional processing capability in any convenient way. For
example, in the INGRES system of Relational Technol-
ogy, Inc., the RETRIEVE statement of QUEL [29]
embodies all three operators (select, project, join) in one
statement, in such a way that one can obtain the same
effect as any one of the operators or any combination of
them.

In the definition of the relational model there are
several prohibitions. To cite two examples: user-visible
navigation links between tables are ruled out, and data-
base information must not be represented (or hidden) in
the ordering of tuples within base relations. Our experi-
ence is that DBMS designers who have implemented
non-relational systems do not readily understand and
accept these prohibitions. By contrast, users enthusiasti-
cally understand and accept the enhanced ease of learn-
ing and ease of use resulting from these prohibitions.

Incidentally, the Relational Task Group of the Amer-
ican National Standards Institute has recently issued a
report [4] on the feasibility of developing a standard for
relational database systems. This report contains an en-
lightening analysis of the features of a dozen relational
systems, and its authors clearly understand the relational
model.

In order to have wide applicability most relational
DBMS have a data sublanguage which can be interfaced
with one or more of the commonly used programming
languages (e.g., Cobol, Fortran, PL/I, APL). We shall
refer to these latter languages as host languages. A rela-
tional DBMS usually supports at least one end-user
oriented data sublanguage--sometimes several, because
the needs of these users may vary. Some prefer string
languages such as QUEL or SQL [5], while others prefer
the screen-oriented two-dimensional data sublanguage
of Query-by-Example [33].

Now, some relational systems (e.g., System R [6],
INGRES [29]) support a data sublanguage that is usable
in two modes: (1) interactively at a terminal and (2)
embedded in an application program written in a host
language. There are strong arguments for such a double-
mode data sublanguage:

(1) With such a language application programmers
can separately debug at a terminal the database state-
ments they wish to incorporate in their application pro-
grams--people who have used SQL to develop applica-
tion programs claim that the double-mode feature sig-
nificantly enhances their productivity;

(2) Such a language significantly enhances commu-
nication among programmers, analysts, end users, data-
base administration staff, etc.;

(3) Frivolous distinctions between the languages used
in these two modes place an unnecessary learning and
memory burden on those users who have to work in both
modes.

The importance of this feature in productivity sug-
gests that relational DBMS be classified according to
whether they possess this feature or not. Accordingly, we
call those relational DBMS that support a double-mode
sublanguage uniform relational Thus, a uniform rela-
tional DBMS supports relational processing at both an
end-user interface and at an application programming
interface using a data sublanguage common to both inter-

faces.
The natural term for all other relational DBMS is

non-uniform relational An example of a non-uniform
relational DBMS is the TANDEM ENCOMPASS [19].
With this system, when retrieving data interactively at a
terminal, one uses the relational data sublanguage EN-
FORM (a language with relational processing capabil-
ity). When writing a program to retrieve or manipulate
data, one uses an extended version of Cobol (a language
that does not possess the relational processing capability).
Common to both levels of use are the structures: tables
without user-visible navigation links between them.

A question that immediately arises is this: how can a
data sublanguage with relational processing capability
be interfaced with a language such as Cobol or PL/ I that
can handle data one record at a time only (i.e., that is
incapable of treating a set of records as a single operand)?
To solve this problem we must separate the following

113 Communications February 1982
of Volume 25
the ACM Number 2

two actions from one another: (1) def'mition of the rela-
tion to be derived; (2) presentation of the derived relation
to the host language program.

One solution (adopted in the Peterlee Relational Test
Vehicle [31]) is to cast a derived relation in the form of
a file that can be read record-by-record by means of host
language statements. In this case delivery of records is
delegated to the file system used by the pertinent host
language.

Another solution (adopted by System R) is to keep
the delivery of records under the control of data sublan-
guage statements and, hence, under the control of the
relational DBMS optimizer. A query statement Q of
SQL (the data sublanguage of System R) may be em-
bedded in a host language program, using the following
kind of phrase (for expository reasons, the syntax is not
exactly that of SQL)

DECLARE C CURSOR FOR Q

where C stands for any name chosen by the programmer.
Such a statement associates a cursor named C with the
defining expression Q. Tuples from the derived relation
defined by Q are presented to the program one at a time
by means of the named cursor. Each time a FET CH per
this cursor is executed, the system delivers another tuple
from the derived relation. The order of delivery is sys-
tem-determined unless the SQL statement Q defining
the derived relation contains an ORDER BY clause.

It is important to note that in advancing a cursor over
a derived relation the programmer is not engaging in
navigation to some target data. The derived relation is
itself the target data! It is the DBMS that determines
whether the derived relation should be materialized en
bloc prior to the cursor-controlled scan or materialized
piecemeal during the scan. In either case, it is the system
(not the programmer) that selects the access paths by
which the derived data is to be generated. This takes a
significant burden off the programmer's shoulders,
thereby increasing his productivity.

6. Skepticism About Relational Systems

There has been no shortage of skepticism concerning
the practicality of the relational approach to database
management. Much of this skepticism stems from a lack
of understanding, some from a fear of the numerous
theoretical investigations that are based on the relational
model [1, 2, 15, 16, 24]. Instead of welcoming a theoret-
ical foundation as providing soundness, the attitude
seems to be: if it's theoretical, it cannot be practical. The
absence of a theoretical foundation for almost all non-
relational DBMS is the prime cause of their ungepotchket
quality. (This is a Yiddish word, one of whose meanings
is patched up.)

On the other hand, it seems reasonable to pose the
following two questions:

(1) Can a relational system provide the range of ser-

vices that we have grown to expect from other DBMS?
(2) If (1) is answered affirmatively, can such a system

perform as well as non-relational DBMS? a

We look at each of these in turn.

6.1 Range of Services
A full-scale DBMS provides the following capabili-

ties:

• data storage, retrieval, and update;
• a user-accessible catalog for data description;
• transaction support to ensure that all or none of a

sequence of database changes are reflected in the
pertinent databases (see [17] for an up-to-date sum-
mary of transaction technology);

• recovery services in case of failure (system, media,
or program);

• concurrency control services to ensure that concur-
rent transactions behave the same way as if run in
some sequential order;

• authorization services to ensure that all access to
and manipulation of data be in accordance with
specified constraints on users and programs [18];

• integration with support for data communication;
• integrity services to ensure that database states and

changes of state conform to specified rules.

Certain relational prototypes developed in the early
seventies fell far short o f providing all these services
(possibly for good reasons). Now, however, several re-
lational systems are available as software products and
provide all these services with the exception of the last.
Present versions of these products are admittedly weak
in the provision of integrity services, but this is rapidly
being remedied [10].

Some relational DBMS actually provide more com-
plete data services than the non-relational systems. Three
examples follow.

As a first example, relational DBMS support the
extraction of all meaningful relations from a database,
whereas non-relational systems support extraction only
where there exist statically predefmed access paths.

As a second example of the additional services pro-
vided by some relational systems, consider views. A view
is a virtual relation (table) defined by means of an
expression or sequence of commands. Although not di-
rectly supported by actual data, a view appears to a user
as if it were an additional base table kept up-to-date and
in a state of integrity with the other base tables. Views
are useful for permitting application programs and users
at terminals to interact with constant view structures,
even when the base tables themselves are undergoing
structural changes at the logical level (providing that the
pertinent views are still def'mable from the new base
tables). They are also useful in restricting the scope of

3 One should bear in mind that the non-relational ones always
employ comparatively low level data sublanguages for application
programming.

114 Communications February 1982
of Volume 25
the ACM Number 2

access of programs and users. Non-relational systems
either do not support views at all or else support much
more primitive counterparts, such as the CODASYL
subschema.

As a third example, some systems (e.g., SQL/DS [28]
and its prototype predecessor System R) permit a variety
of changes to be made to the logical and physical orga-
nization of the data dynamically--while transactions are
in progress. These changes rarely require application
programs to be recoded. Thus, there is less of a program
maintenance burden, leaving programmers to be more
productive doing development rather than maintenance.
This capability is made possible in SQL/DS by the fact
that the system has complete control over access path
selection.

In non-relational systems such changes would nor-
mally require all other database activities including
transactions in progress to be brought to a halt. The
database then remains out of action until the organiza-
tional changes are completed and any necessary recom-
piling done.

6.2 Performance
Naturally, people would hesitate to use relational

systems if these systems were sluggish in performance.
All too often, erroneous conclusions are drawn about the
performance of relational systems by companng the time
it might take for one of these systems to execute a
complex transaction with the time a non-relational sys-
tem might take to execute an extremely simple transac-
tion. To arrive at a fair performance comparison, one
must compare these systems on the same tasks or appli-
cations. We shah present arguments to show why rela-
tional systems should be able to compete successfully
with non-relational systems.

Good performance is determined by two factors: (1)
the system must support performance-oriented physical
data structures; (2) high-level language requests for data
must be compiled into lower-level code sequences at
least as good as the average application programmer can
produce by hand.

The first step in the argument is that a program
written in a Cobol-level language can be made to per-
form efficiently on large databases containing production
data structured in tabular form with no user-visible
navigation links between them. This step in the argument
is supported by the following information [19]: as of
August 1981, Tandem Computer Corp. had manufac-
tured and installed 760 systems; of these, over 700 were
making use of the Tandem ENCOMPASS relational
database management system to support databases con-
taining production data. Tandem has committed its own
manufacturing database to the care of ENCOMPASS.
ENCOMPASS does not support links between the data-
base tables, either user-visible (navigation) links or user-
invisible (access'method) links.

In the second step of the argument, suppose we take
the application programs in the above-cited installations

and replace the database retrieval and manipulation
statements by statements in a database sublanguage with
a relational processing capability (e.g., SQL). Clearly, to
obtain good performance with such a high level lan-
guage, it is essential that it be compiled into object code
(instead of being interpreted), and it is essential that that
object code be efficient.

Compilation is used in System R and its product
version SQL/DS. In 1976 Raymond Lode developed-an
ingenious pre- and post-compiling scheme for coping
with dynamic changes in access paths [21]. It also copes
with early (and hence efficient) authorization and integ-
rity checking (the latter, however, is not yet imple-
mented). This scheme calls for compiling in a rather
special way the SQL statements embedded in a host
language program. This compilation step transforms the
SQL statements into appropriate CALLs within the
source program together with access modules containing
object code. These modules are then stored in the data-
base for later use at runtime. The code in these access
modules is generated by the system so as to optimize the
sequencing of the major operations and the selection of
access paths to provide runtime effÉciency. After this pre-
compilation step, the application program is compiled
by a regular compiler for the pertinent host language. If
at any subsequent time one or more of the access paths
is removed and an attempt is made to run the program,
enough source information has been retained in the
access module to enable the system to re-compile a new
access module that exploits the now existing access paths
without requiring a re-compilation of the application pro-
gram.

Incidentally, the same data sublanguage compiler is
used on ad hoc queries submitted interactively from a
terminal and also on queries that are dynamically gen-
erated during the execution of a program (e.g., from
parameters submitted interactively). Immediately after
compilation, such queries are executed and, with the
exception of the simplest of queries, the performance is
better than that of an interpreter.

The generation of access modules (whether at the
initial compiling or re-compiling stage) entails a quite
sophisticated optimization scheme [27], which makes use
of system-maintained statistics that would not normally
be within the programmer's knowledge. Thus, only on
the simplest of all transactions would it be possible for
an average application programmer to compete with this
optimizer in generation of efficient code. Any attempts
to compete are bound to reduce the programmer's pro-
ductivity. Thus, the price paid for extra compile-time
overhead would seem to be well worth paying.

Assuming non-linked tabular structures in both cases,
we can expect SQL/DS to generate code comparable
with average hand-written code in many simple cases,
and superior in many complex cases. Many commercial
transactions are extremely simple. For example, one may
need to look up a record for a particular railroad wagon
to fred out where it is or fred the balance in someone's

115 Communications February 1982
of Volume 25
the ACM Number 2

savings account. If suitably fast access paths are sup-
ported (e.g., hashing), there is no reason why a high-level
language such as SQL, QUEL, or QBE should result in
less efficient runtime code for these simple transactions
than a lower level language, even though such transac-
tions make little use of the optimizing capability of the
high-level data sublanguage compiler.

7. Future Directions

If we are to use relational database as a foundation
for productivity, we need to know what sort of develop-
ments may lie ahead for relational systems.

Let us deal with near-term developments first. In
some relational systems stronger support is needed for
domains and primary keys per suggestions in [10]. As
already noted, all relational systems need upgrading with
regard to automatic adherence to integrity constraints.
Existing constraints on updating join-type views need to
be relaxed (where theoretically possible), and progress is
being made on this problem [20]. Support for outer joins
is needed.

Marked improvements are being made in optimizing
technology, so we may reasonably expect further im-
provements in performance. In certain products, such as
the ICL CAFS [22] and the Britton-Lee IDM500 [13],
special hardware support has been implemented. Special
hardware may help performarice in certain types of
applications. However, in the majority of applications
dealing with formatted databases, software-implemented
relational systems can compete in performance with
software-implemented non-relational systems.

At present, most relational systems do not provide
any special support for engineenng and scientific data-
bases. Such support, including interfacing with Fortran,
is clearly needed and can be expected.

Catalogs in relational systems already consist of ad-
ditional relations that can be interrogated just like the
rest of the database using the same query language. A
natural development that can and should be swiftly put
in place is the expansion of these catalogs into full-
fledged active dictionaries to provide additional on-line
data control.

Finally, in the near term, we may expect database
design aids suited for use with relational systems both at
the logical and physical levels.

In the longer term we may expect support for rela-
tional databases distributed over a communications net-
work [25, 30, 32] and managed in such a way that
application programs and interactive users can manipu-
late the data (1) as if all of it were stored at the local
node--location transparency--and (2) as if no data were
replicated anywhere--replication transparency. All three
of the projects cited above are based on the relational
model. One important reason for this is that relational
databases offer great decomposition flexibility when
planning how a database is to be distributed over a

116

network of computer systems, and great recomposition
power for dynamic combination of decentralized infor-
mation. By contrast, CODASYL DBTG databases are
very difficult to decompose and recompose due to the
entanglement of the owner-member navigation links.
This property makes the CODASYL approach extremely
difficult to adapt to a distributed database environment
and may well prove to be its downfall. A second reason
for use of the relational model is that it offers concise
high level data sublanguages for transmitting requests
for data from node to node.

The ongoing work in extending the relational model
to capture in a formal way more meaning of the data
can be expected to lead to the incorporation of this
meaning in the database catalog in order to factor it out
of appl!cation programs and make these programs even
more concise and simple. Here, we are, of course, talking
about meaning that is represented in such a way that the
system can understand it and act upon it.

Improved theories are being developed for handling
missing data and inapplicable data (see for example
[3]). This work should yield improved treatment of null
values.

As it stands today, relational database is best suited
to data with a rather regular or homogeneous structure.
Can we retain the advantages of the relational approach
while handling heterogeneous data also? Such data may
include images, text, and miscellaneous facts. An affirm-
ative answer is expected, and some research is in progress
on this subject, but more is needed.

Considerable research is needed to achieve a rap-
prochement between database languages and program-
ming languages. Pascal/R [26] is a good example of work
in this direction. Ongoing investigations focus on the
incorporation of abstract data types into database lan-
guages on the one hand [12] and relational processing
into programming languages on the other.

8. Conclusions

We have presented a series of arguments to support
the claim that relational database technology offers dra-
matic improvements in productivity both for end users
and for application programmers. The arguments center
on the data independence, structural simplicity, and
relational processing defined in the relational model and
implemented in relational database management sys-
tems. All three of these features simplify the task of
developing application programs and the formulation of
queries and updates to be submitted from a terminal. In
addition, the first feature tends to keep programs viable
in the face of organizational and descriptive changes in
the database and therefore reduces the effort that is
normally diverted into the maintenance of programs.

Why, then, does the title of this paper suggest that
relational database provides only a foundation for im-
oroved productivity and not the total solution? The

Communications February 1982
of Volume 25
the ACM Number 2

reason is simple: relational database deals only with the
shared data component of application programs and
end-user interactions. There are numerous complemen-
tary technologies that may help with other components
or aspects, for example, programming languages that
support relational processing and improved checking of
data types, improved editors that understand more of the
language being used, etc. We use the term "foundation,"
because interaction with shared data (whether by pro-
gram or via terminal) represents the core of so much
data processing activity.

The practicality of the relational approach has been
proven by the test and production installations that are
already in operation. Accordingly, with relational sys-
tems we can now look forward to the productivity boost
that we all hoped DBMS would provide in the first place.

Acknowledgments. I would like to express my in-
debtedness to the System R development team at IBM
Research, San Jose for developing a full-scale, uniform
relational prototype that entailed numerous language
and system innovations; to the development team at the
IBM Laboratory, Endicott, N.Y. for the professional way
in which they converted System R into product form; to
the various teams at universities, hardware manufac-
turers, software firms, and user intallations," who de-
signed and implemented working relational systems; to
the QBE team at IBM Yorktown Heights, N.Y.; to the
PRTV team at the IBM Scientific Centre in England;
and to the numerous contributors to database theory
who have used the relational model as a cornerstone. A
special acknowledgement is due to the very few col-
leagues who saw something worth supporting in the early
stages, particularly, Chris Date and Sharon Weinberg.
Finally, it was Sharon Weinberg who suggested the
theme of this paper.

Received 10/81; revised and accepted 12/81

References
1. Beeri, C., Bernstein, P., Goodman, N. A sophisticate's introduction
to database normalization theory. Proc. Very Large Data Bases, West
Berlin, Germany, Sept. 1978.
2. Bernstein, P.A., Goodman, N., Lai, M-Y. Laying phantoms to
rest. Report TR-03-81, Center for Research in Computing
Technology, Harvard University, Cambridge, Mass., 1981.
3. Biskup, J.A. A formal approach to null values in database
relations. Proc. Workshop on Formal Bases for Data Bases, Toulouse,
France, Dec 1979; published in [16] (see below) pp 299-342.
4. Brodie, M. and Schmidt, J. (Eds), Report of the ANSI Relational
Task Group., (to be published ACM S1GMOD Record).
5. Chamberlin, D.D., et al. SEQUEL2: A unified approach to data
definition, manipulation, and control. 1BM J. Res. & Dev., 20, 6,
(Nov. 1976) 560-565.
6. Chamberlin, D.D., et al. A history and evaluation of system R.
Comm. ACM, 24, 10, (Oct. 1981) 632-646.
7. Codd, E.F. A relational model of data for large shared data
banks. Comm. ACM, 13, 6, (June 1970) 377-387.

8. Codd, E.F. Extending the database relational model to capture
more meaning. ACM TODS, 4, 4, (Dec. 1979) 397-434.
9. Codd, E.F. Data models in database management. ACM
SIGMOD Record, 11, 2, (Feb. 1981) 112-114.
10. Codd, E.F. The capabilities of relational database management
systems. Proc. Convencio lnformatica Llatina, Barcelona, Spain, June
9-12, 1981, pp 13-26; also available as Report 3132, IBM Research
Lab., San Jose, Calif.
11. Date, C.J. Referential integrity. Proc. Very Large Data Bases,
Cannes, France, September 9-11, 1981, pp 2-12.
12. Ehrig, H., and Weber, H. Algebraic specification schemes for
data base systems. Proc. Very Large Data Bases, West Berlin,
Germany, Sept 13-15, 1978, 427-440.
13. Epstein, R., and Hawthorne, P. Design decisions for the
intelligent database machine. Proc. NCC 1980, AF1PS, Vol. 49,, May
1980, pp 237-241.
14. Eswaran, K.P., and Chamberlin, D.D. Functional specifications
of a subsystem for database integrity. Proc. Very Large Data Bases,
Framingham, Mass., Sept. 1975, pp 48-68.
15. Fagin, R. Horn clauses and database dependencies. Proc. 1980
A CM SIGA CT Symp. on Theory of Computing, Los Angeles, CA, pp
123-134.
16. GaUaire, H., Minker, J., and Nicolas, J.M. Advances in Data Base
Theory. Vol 1, Plenum Press, New York, 1981.
17. Gray, J. The transaction concept: virtues and limitations. Proc.
Very Large Data Bases, Cannes, France, September 9-11, 1981, pp
144-154.
18. Griffiths, P.G., and Wade, B.W. An authorization mechanism for
a relational database system. ACM TODS, 1, 3, (Sept 1976) 242-255.
19. Held, G. ENCOMPASS: A relational data manager. Data Base/
81, Western Institute of Computer Science, Univ. of Santa Clara,
Santa Clara, Calif., August 24-28, 1981.
20. Keller, A.M. Updates to relational databases through views
involving joins. Report RJ3282, IBM Research Laboratory, San Jose,
Calif., October 27, 1981.
21. Lorie, R.A., and Nilsson, J.F. An access specification language
for a relational data base system. 1BM J. Res. & Dev., 23, 3, (May
1979) 286-298.
22. Mailer, V.A.J. The content addressable file store--CAFS. 1CL
Technical J., 1, 3, (Nov. 1979) 265-279.
23. Reisner, P. Human factors studies of database query languages:
A survey and assessment. ACM Computing Surveys, 13, 1, (March
1981) 13-31.
24. Rissanen, J. Theory of relations for databases--A tutorial survey.
Proc. Symp. on Mathematical Foundations of Computer Science,
Zakopane, Poland, September 1978, Lecture Notes in Computer
Science, No. 64, Springer Verlag, New York, 1978.
25. Rothnie, J.B., Jr. et al. Introduction to a system for distributed
databases (SDD-1). ACM TODS, 5, 1, (March 1980) 1-17.
26. Schmidt, J.W. Some high level language constructs for data of
type relation. ACM TODS, 2, 3, (Sept 1977) 247-261.
27. Selinger, P.G., et al. Access path selection in a relational database
system. Proc. 1979 A CM S1GMOD International Conference on
Management of Data, Boston, MA, May 1979, pp 23-34.
28. ~ , SQL/Data system for VSE: A relational data system for
application development. IBM Corp. Data Processing Division,
White Plains, N.Y., G320-6590, Feb 1981.
29. Stonebraker, M.R., et al. The design and implementation of
INGRES, ACM TODS, 1, 3, (Sept. 1976) 189-222.
30. Stonebraker, M.R., and Neuhold, E.J. A distributed data base
version of INGRES. Proc. Second Berkeley Workshop on Distributed
Data Management and Computer Networks, Lawrence-Berkeley Lab.,
Berkeley, Calif., May 1977, pp 19-36.
31. Todd., S.J.P. The Peterlee relational test vehicle--A system
overview. IBM Systems J., 15, 4, 1976, 285-308.
32. Williams, R. et al. R* : An overview of the architecture. Report
RJ3325, IBM Research Laboratory, San Jose, Calif., October 27,
1981.
33. Zloof, M.M. Query by example. Proc. NCC, AF1PS Vol 44, May
1975, pp 431-438.

117 Communications February 1982
of Volume 25
the ACM Number 2

