
The 1981 ACM Turing Award Lecture 
Delivered at ACM '81, Los Angeles, California, November 9, 1981 

The 1981 A(2M Turing Award was presented to Edgar F. Codd, an IBM 
Fellow of the San Jose Research Laboratory, by President Peter Denning on 
November 9, 1981 at the A(2M Annual Conference in Los Angeles, California. 
It is the Association's foremost award for technical contributions to the com- 
puting community.  

(2odd was selected by the A(2M General Technical Achievement Award 
(2ommittee for his "fundamental  and continuing contributions to the theory 
and practice of database management  systems." The originator of the relational 
model for databases, (2odd has made further important contributions in the 
development of relational algebra, relational calculus, and normalization of 
relations. 

Edgar F. (2odd joined IBM in 1949 to prepare programs for the Selective 
Sequence Electronic Calculator. Since then, his work in computing has encom- 
passed logical design of computers (IBM 701 and Stretch), managing a computer 
center in Canada,  heading the development of one of the first operating systems 
with a general mult iprogramming capability, contributing to the logic of self- 
reproducing automata,  developing high level techniques for software specifica- 

tion, creating and extending the relational approach to database management,  and developing an English analyzing 
and synthesizing subsystem for casual users of relational databases. He is also the author of Cellular Automata, an early 
volume in the A(2M Monograph Series. 

(2odd received his B.A. and M.A. in Mathematics from Oxford University in England, and his M.Sc. and Ph.D. 
in (2omputer and Communication Sciences from the University of Michigan. He is a Member  of the National 
Academy of Engineering (USA) and a Fellow of the British Computer  Society. 

The A(2M Turing Award is presented each year in commemoration of A. M. Turing, the English mathematician 
who made major contributions to the computing sciences. 

Relational Database: A Practical Foundation for 
Productivity 

E.  F.  C o d d  

I B M  S a n  J o s e  R e s e a r c h  L a b o r a t o r y  

It is well known that the growth in demands from end 
users for new applications is outstripping the capability 
of data processing departments to implement the corre- 
sponding application programs. There are two comple- 
mentary approaches to attacking this problem (and both 
approaches are needed): one is to put end users into 
direct touch with the information stored in computers; 
the other is to increase the productivity of data process- 
ing professionals in the development of application pro- 
grams. It is less well known that a single technology, 
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relational database management, provides a practical 
foundation for both approaches. It is explained why this 
is so. 

While developing this productivity theme, it is noted 
that the time has come to draw a very sharp line between 
relational and non-relational database systems, so that 
the label "relational" will not be used in misleading ways. 
The key to drawing this line is something called a 
"relational processing capability." 

CR Categories and Subject Descriptors: H.2.0 [Database 
Management]: General; H.2.1 [Database Management]: 
Logical Design-data models; H.2.4 [Database Manage- 
ment]: Systems 
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1. Introduction 

It is generally admitted that there is a productivity 
crisis in the development of "running code" for com- 
mercial and industrial applications. The growth in end 
user demands for new applications is outstripping the 
capability of data processing departments to implement 
the corresponding application programs. In the late six- 
ties and early seventies many people in the computing 
field hoped that the introduction of database manage- 
ment systems (commonly abbreviated DBMS) would 
markedly increase the productivity of application pro- 
grammers by removing many of their problems in han- 
dling input and output files. DBMS (along with data 
dictionaries) appear to have been highly successful as 
instruments of data control, and they did remove many 
of the file handling details from the concern of applica- 
tion programmers. Why then have they failed as pro- 
ductivity boosters? 

There are three principal reasons: 

(1) These systems burdened application programmers 
with numerous concepts that were irrelevant to their data 
retrieval and manipulation tasks, forcing them to think 
and code at a needlessly low level of structural detail (the 
"owner-member set" of CODASYL DBTG is an out- 
standing example1); 

(2) No commands were provided for processing mul- 
tiple records at a time--in other words, DBMS did not 
support set processing and, as a result, programmers were 
forced to think and code in terms of iterative loops that 
were often unnecessary (here we use the word "set" in 
its traditional mathematical sense, not the linked struc- 
ture sense of CODASYL DBTG); 

(3) The needs of end users for direct interaction with 
databases, particularly interaction of an unanticipated 
nature, were inadequately recognized--a query capabil- 
ity was assumed to be something one could add on to a 
DBMS at some later time. 

Looking back at the database management systems 
of the late sixties, we may readily observe that there was 
no sharp distinction between the programmer's (logical) 
view of the data and the (physical) representation of data 
in storage. Even though what was called the logical level 
usually provided protection from placement expressed in 
terms of storage addresses and byte offsets, many stor- 
age-oriented concepts were an integral part of this levels 
The adverse impact on development productivity of 
requiring programmers to navigate along access paths to 

1 The  crux o f  the problem with the the C O D A S Y L  DBTG owner-  
member  set is that it combines into one construct three ortbogonal 
concepts: one- to-many relationship, existence dependency, and a user- 
visible linked structure to be traversed by application programs. It is 
the last o f  these three concepts that places a heavy and unnecessary 
navigation burden on application programmers. It also presents an  
insurmountable  obstacle for end users. 
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reach the target data (in some cases having to deal 
directly with the layout of data in storage and in others 
having to follow pointer chains) was enormous. In ad- 
dition, it was not possible to make sight changes in the 
layout in storage without simultaneously having to revise 
all programs that relied on the previous structure. The 
introduction of an index might have a similar effect. As 
a result, far too much manpower was being invested in 
continual (and avoidable) maintenance of application 
programs. 

Another consequence was that installation of these 
systems was often agonizingly slow, due to the large 
amount of time spent in learning about the systems and 
in planning the organization of the data at both logical 
and physical levels, prior to database activation. The aim 
of this preplanning was to "get it right once and for all" 
so as to avoid the need for subsequent changes in the 
data description that, in turn, would force coding changes 
in application programs. Such an objective was, of 
course, a mirage, even if sound principles for database 
design had been known at the time (and, of course, they 
were not). 

To show how relational database management sys- 
tems avoid the three pitfalls cited above, we shall first 
review the motivation of the relational model and discuss 
some of its features. We shall then classify systems that 
are based upon that model. As we proceed, we shall 
stress application programmer productivity, even though 
the benefits for end users are just as great, because much 
has already been said and demonstrated regarding the 
value of relational database to end users (see [23] and 
the papers cited therein). 

2. Motivation 

The most important motivation for the research work 
that resulted in the relational model was the objective of 
providing a sharp and clear boundary between the logical 
and physical aspects of database management (including 
database design, data retrieval, and data manipulation). 
We call this the data independence objective. 

A second objective was to make the model structur- 
ally simple, so that all kinds of users and programmers 
could have a common understanding of the data, and 
could therefore communicate with one another about the 
database. We call this the communicability objective. 

A third objective was to introduce high level language 
concepts (but not specific syntax) to enable users to 
express operations upon large chunks of information at 
a time. This entailed providing a foundation for set- 
oriented processing (i.e., the ability to express in a single 
statement the processing of multiple sets of records at a 
time). We call this the set-processing objective. 

There were other objectives, such as providing a 
sound theoretical foundation for database organization 
and management, but these objectives are less relevant 
to our present productivity theme. 
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3. The Relational Model 

To satisfy these three objectives, it was necessary to 
discard all those data structuring concepts (e.g., repeating 
groups, linked structures) that were not familiar to end 
users and to take a fresh look at the addressing of data. 

Positional concepts have always played a significant 
role in computer addressing, beginning with plugboard 
addressing, then absolute numeric addressing, relative 
numeric addressing, and symbolic addressing with arith- 
metic properties (e.g., the symbolic address A + 3 in 
assembler language; the address X(I + l, J - 2) of  an 
element in a Fortran, Algol, or PL/ I  array named X). In 
the relational model we replace positional addressing by 
totally associative addressing. Every datum in a rela- 
tional database can be uniquely addressed by means of 
the relation name, primary key value, and attribute 
name. Associative addressing of this form enables users 
(yes, and even programmers also!) to leave it to the 
system to (1) determine the details of placement of a new 
piece of  information that is being inserted into a database 
and (2) select appropriate access paths when retrieving 
data. 

All information in a relational database is represented 
by values in tables (even table names appear as character 
strings in at least one table). Addressing data by value, 
rather than by position, boosts the productivity of pro- 
grammers as well as end users (positions of items in 
sequences are usually subject to change and are not easy 
for a person to keep track of, especially if  the sequences 
contain many items). Moreover, the fact that program- 
mers and end users all address data in the same way goes 
a long way to meeting the communicability objective. 

The n-ary relation was chosen as the single aggregate 
structure for the relational model, because with appro- 
priate operators and an appropriate conceptual represen- 
tation (the table) it satisfies all three of  the cited objec- 
tives. Note that an n-ary relation is a mathematical set, 
in which the ordering of rows is immaterial. 

Sometimes the following questions arise: Why call it 
the relational model? Why not call it the tabular model? 
There are two reasons: (1) At the time the relational 
model was introduced, many people in data processing 
felt that a relation (or relationship) among two or more 
objects must be represented by a linked data structure 
(so the name was selected to counter this misconception); 
(2) Tables are at a lower level of abstraction than rela- 
tions, since they give the impression that positional (ar- 
ray-type) addressing is applicable (which is not true of 
n-ary relations), and they fail to show that the informa- 
tion content of a table is independent of row order. 
Nevertheless, even with these minor flaws, tables are the 
most important conceptual representation of  relations, 
because they are universally understood. 

Incidentally, if a data model is to be considered as a 
serious alternative for the relational model, it too should 
have a clearly defined conceptual representation for 
database instances. Such a representation facilitates 
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thinking about the effects of whatever operations are 
under consideration. It is a requirement for programmer 
and end-user productivity. Such a representation is 
rarely, if ever, discussed in data models that use concepts 
such as entities and relationships, or in functional data 
models. Such models frequently do not have any oper- 
ators either! Nevertheless, they may be useful for certain 
kinds of  data type analysis encountered in the process of 
establishing a new database, especially in the very early 
stages of determining a preliminary informal organiza- 
tion. This leads to the question: What is a data model? 

A data model is, of course, not just a data structure, 
as many people seem to think. It is natural that the 
principal data models are named after their principal 
structures, but that is not the whole story. 

A data model [9] is a combination of at least three 
components: 

(1) A collection of data structure types (the database 
building blocks); 

(2) A collection of operators or rules of inference, 
which can be applied to any valid instances of the data 
types listed in (1), to retrieve, derive, or modify data 
from any parts of those structures in any combinations 
desired; 

(3) A collection of general integrity rules, which im- 
plicitly or explicitly define the set of consistent database 
states or changes of state or both--these rules are general 
in the sense that they apply to any database using this 
model (incidentally, they may sometimes be expressed 
as insert-update-delete rules). 

The relational model is a data model in this sense, 
and was the first such to be defined. We do not propose 
to give a detailed definition of the relational model 
here--the original definition appeared in [7], and an 
improved one in Secs. 2 and 3 of [8]. Its structural part 
consists of  domains, relations of assorted degrees (with 
tables as their principal conceptual representation), at- 
tributes, tuples, candidate keys, and primary keys. Under 
the principal representation, attributes become columns 
of tables and tuples become rows, but there is no notion 
of one column succeeding another or of one row suc- 
ceeding another as far as the database tables are con- 
cerned. In other words, the left to right order of columns 
and the top to bottom order of rows in those tables are 
arbitrary and irrelevant. 

The manipulative part of the relational model consists 
of the algebraic operators (select, project, join, etc.) which 
transform relations into relations (and hence tables into 
tables). 

The integrity part consists of  two integrity rules: entity 
integrity and referential integrity (see [8, 11] for recent 
developments in this latter area). In any particular ap- 
plication of a data model it may be necessary to impose 
further (database-specific) integrity constraints, and 
thereby define a smaller set of consistent database states 
or changes of  state. 

In the development of  the relational model, there has 
always been a strong coupling between the structural, 
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manipulative, and integrity aspects. If  the structures are 
defined alone and separately, their behavioral properties 
are not pinned down, infinitely many possibilities present 
themselves, and endless speculation results. It is therefore 
no surprise that attempts such as those of CODASYL 
and ANSI to develop data structure definition language 
(DDL) and data manipulation language (DML) in sep- 
arate committees have yielded many misunderstandings 
and incompatibilities. 

4. The Relational Processing Capability 

The relational model calls not only for relational 
structures (which can be thought of as tables), but also 
for a particular kind of set processing called relational 
processing. Relational processing entails treating whole 
relations as operands. Its primary purpose is loop-avoid- 
ance, an absolute requirement for end users to be pro- 
ductive at all, and a clear productivity booster for appli- 
cation programmers. 

The SELECT operator (also called RESTRICT) of 
the relational algebra takes one relation (table) as oper- 
and and produces a new relation (table) consisting of 
selected tuples (rows) of the first. The PROJECT oper- 
ator also transforms one relation (table) into a new one, 
this time however consisting of selected attributes (col- 
umns) of the first. The EQUI-JOIN operator takes two 
relations (tables) as operands and produces a third con- 
sisting of rows of the first concatenated with rows of the 
second, but only where specified columns in the first and 
specified columns in the second have matching values. 
If  redundancy in columns is removed, the operator is 
called NATURAL JOIN. In what follows, we use the 
term "join" to refer to either the equi-join or the natural 
join. 

The relational algebra, which includes these and 
other operators, is intended as a yardstick of power. It is 
not intended to be a standard language, to which all 
relational systems should adhere. The set-processing ob- 
jective of the relational model is intended to be met by 
means of a data sublanguage 2 having at least the power 
of the relational algebra without making use of  iteration 
or recursion statements. 

Much of the derivability power of the relational 
algebra is obtained from the SELECT, PROJECT, and 
JOIN operators alone, provided the JOIN is not subject 
to any implementation restrictions having to do with 
predefinition of supporting physical access paths. A sys- 
tem has an unrestricted join capability if it allows joins to 
be taken wherein any pair of attributes may be matched, 
providing only that they are defined on the same domain 
or data type (for our present purpose, it does not matter 

2 A data sublanguage is a specialized language for database man-  
agement,  supporting at least data definition, data retrieval, insertion, 
update, and deletion. It need not be computationally complete, and 
usually is not. In the context of  application programming,  it is intended 
to be used in conjunction with one or more programming languages. 

112 

whether the domain is syntactic or semantic and it does 
not matter whether the data type is weak or strong, but 
see [10] for circumstances in which it does matter). 

Occasionally, one finds systems in which join is 
supported only if the attributes to be matched have the 
same name or are supported by a certain type of pre- 
declared access path. Such restrictions significantly im- 
pair the power of the system to derive relations from the 
base relations. These restrictions consequently reduce 
the system's capability to handle unanticipated queries 
by end users and reduce the chances for application 
programmers to avoid coding iterative loops. 

Thus, we say that a data sublanguage L has a rela- 
tional processing capability if the transformations speci- 
fied by the SELECT, PROJECT, and unrestricted JOIN 
operators of the relational algebra can be specified in L 
without resorting to commands for iteration or recursion. 
For a database management system to be called rela- 
tional it must support: 

(1) Tables without user-visible navigation links be- 
tween them; 

(2) A data sublanguage with at least this (minimal) 
relational processing capability. 

One consequence of this is that a DBMS that does 
not support relational processing should be considered 
non-relational. Such a system might be more appropri- 
ately called tabular, providing that it supports tables 
without user-visible navigation links between tables. This 
term should replace the term "semi-relational" used in 
[8], because there is a large difference in implementation 
complexity between tabular systems, in which the pro- 
grammer does his own navigation, and relational sys- 
tems, in which the system does the navigation for him, 
i.e., the system provides automatic navigation. 

The definition of relational DBMS given above in- 
tentionally permits a lot of latitude in the services pro- 
vided. For example, it is not required that the full 
relational algebra be supported, and there is no require- 
ment in regard to support of the two integrity rules of 
the relational model (entity integrity and referential in- 
tegrity). Full support by a relational system of these 
latter two parts of the model justifies calling that system 
fully relational [8]. Although we know of no systems that 
qualify as fully relational today, some are quite close to 
qualifying, and no doubt will soon do so. 

In Fig. 1 we illustrate the distinction between the 
various kinds of relational and tabular systems. For each 
class the extent of shading in the S box is intended to 
show the degree of fidelity of members of that class to 
the structural requirements of the relational model. A 
similar remark applies to the M box with respect to the 
manipulative requirements, and to the I box with respect 
to the integrity requirements. 

m denotes the minimal relational processing capabil- 
ity. c denotes relational completeness (a capability cor- 
responding to a two-valued first order predicate logic 
without nulls). When the manipulation box M is fully 
shaded, this denotes a capability corresponding to the 
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Fig. 1. Classification of  DBMS. 5. The Uniform Relational Property 
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full relational algebra defined in [8] (a three-valued 
predicate logic with a single kind of null). The question 
mark in the integrity box for each class except the fully 
relational is an indication of the present inadequate 
support for integrity in relational systems. Stronger sup- 
port for domains and primary keys is needed [10], as 
well as the kind of facility discussed in [ 14]. 

Note that a relational DBMS may package its rela- 
tional processing capability in any convenient way. For 
example, in the INGRES system of Relational Technol- 
ogy, Inc., the RETRIEVE statement of QUEL [29] 
embodies all three operators (select, project, join) in one 
statement, in such a way that one can obtain the same 
effect as any one of the operators or any combination of 
them. 

In the definition of the relational model there are 
several prohibitions. To cite two examples: user-visible 
navigation links between tables are ruled out, and data- 
base information must not be represented (or hidden) in 
the ordering of tuples within base relations. Our experi- 
ence is that DBMS designers who have implemented 
non-relational systems do not readily understand and 
accept these prohibitions. By contrast, users enthusiasti- 
cally understand and accept the enhanced ease of learn- 
ing and ease of use resulting from these prohibitions. 

Incidentally, the Relational Task Group of the Amer- 
ican National Standards Institute has recently issued a 
report [4] on the feasibility of developing a standard for 
relational database systems. This report contains an en- 
lightening analysis of the features of a dozen relational 
systems, and its authors clearly understand the relational 
model. 

In order to have wide applicability most relational 
DBMS have a data sublanguage which can be interfaced 
with one or more of the commonly used programming 
languages (e.g., Cobol, Fortran, PL/I,  APL). We shall 
refer to these latter languages as host languages. A rela- 
tional DBMS usually supports at least one end-user 
oriented data sublanguage--sometimes several, because 
the needs of these users may vary. Some prefer string 
languages such as QUEL or SQL [5], while others prefer 
the screen-oriented two-dimensional data sublanguage 
of Query-by-Example [33]. 

Now, some relational systems (e.g., System R [6], 
INGRES [29]) support a data sublanguage that is usable 
in two modes: (1) interactively at a terminal and (2) 
embedded in an application program written in a host 
language. There are strong arguments for such a double- 
mode data sublanguage: 

(1) With such a language application programmers 
can separately debug at a terminal the database state- 
ments they wish to incorporate in their application pro- 
grams--people who have used SQL to develop applica- 
tion programs claim that the double-mode feature sig- 
nificantly enhances their productivity; 

(2) Such a language significantly enhances commu- 
nication among programmers, analysts, end users, data- 
base administration staff, etc.; 

(3) Frivolous distinctions between the languages used 
in these two modes place an unnecessary learning and 
memory burden on those users who have to work in both 
modes. 

The importance of this feature in productivity sug- 
gests that relational DBMS be classified according to 
whether they possess this feature or not. Accordingly, we 
call those relational DBMS that support a double-mode 
sublanguage uniform relational Thus, a uniform rela- 
tional DBMS supports relational processing at both an 
end-user interface and at an application programming 
interface using a data sublanguage common to both inter- 

faces. 
The natural term for all other relational DBMS is 

non-uniform relational An example of  a non-uniform 
relational DBMS is the TANDEM ENCOMPASS [19]. 
With this system, when retrieving data interactively at a 
terminal, one uses the relational data sublanguage EN- 
FORM (a language with relational processing capabil- 
ity). When writing a program to retrieve or manipulate 
data, one uses an extended version of Cobol (a language 
that does not possess the relational processing capability). 
Common to both levels of use are the structures: tables 
without user-visible navigation links between them. 

A question that immediately arises is this: how can a 
data sublanguage with relational processing capability 
be interfaced with a language such as Cobol or PL/ I  that 
can handle data one record at a time only (i.e., that is 
incapable of treating a set of records as a single operand)? 
To solve this problem we must separate the following 
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two actions from one another: (1) def'mition of  the rela- 
tion to be derived; (2) presentation of  the derived relation 
to the host language program. 

One solution (adopted in the Peterlee Relational Test 
Vehicle [31]) is to cast a derived relation in the form of  
a file that can be read record-by-record by means of  host 
language statements. In this case delivery of  records is 
delegated to the file system used by the pertinent host 
language. 

Another solution (adopted by System R) is to keep 
the delivery of  records under the control of  data sublan- 
guage statements and, hence, under the control of  the 
relational DBMS optimizer. A query statement Q of  
SQL (the data sublanguage of  System R) may be em- 
bedded in a host language program, using the following 
kind of  phrase (for expository reasons, the syntax is not 
exactly that of  SQL) 

DECLARE C CURSOR FOR Q 

where C stands for any name chosen by the programmer. 
Such a statement associates a cursor named C with the 
defining expression Q. Tuples from the derived relation 
defined by Q are presented to the program one at a time 
by means of  the named cursor. Each time a FET CH  per 
this cursor is executed, the system delivers another tuple 
from the derived relation. The order of  delivery is sys- 
tem-determined unless the SQL statement Q defining 
the derived relation contains an ORDER BY clause. 

It is important to note that in advancing a cursor over 
a derived relation the programmer is not engaging in 
navigation to some target data. The derived relation is 
itself the target data! It is the DBMS that determines 
whether the derived relation should be materialized en 
bloc prior to the cursor-controlled scan or materialized 
piecemeal during the scan. In either case, it is the system 
(not the programmer) that selects the access paths by 
which the derived data is to be generated. This takes a 
significant burden off  the programmer's shoulders, 
thereby increasing his productivity. 

6. Skepticism About Relational Systems 

There has been no shortage of  skepticism concerning 
the practicality of  the relational approach to database 
management. Much of  this skepticism stems from a lack 
of  understanding, some from a fear of  the numerous 
theoretical investigations that are based on the relational 
model [1, 2, 15, 16, 24]. Instead of  welcoming a theoret- 
ical foundation as providing soundness, the attitude 
seems to be: if it's theoretical, it cannot be practical. The 
absence of  a theoretical foundation for almost all non- 
relational DBMS is the prime cause of  their ungepotchket 
quality. (This is a Yiddish word, one of  whose meanings 
is patched up.) 

On the other hand, it seems reasonable to pose the 
following two questions: 

(1) Can a relational system provide the range of  ser- 

vices that we have grown to expect from other DBMS? 
(2) If  (1) is answered affirmatively, can such a system 

perform as well as non-relational DBMS? a 

We look at each of  these in turn. 

6.1 Range of Services 
A full-scale DBMS provides the following capabili- 

ties: 

• data storage, retrieval, and update; 
• a user-accessible catalog for data description; 
• transaction support to ensure that all or none of  a 

sequence of  database changes are reflected in the 
pertinent databases (see [ 17] for an up-to-date sum- 
mary of  transaction technology); 

• recovery services in case of  failure (system, media, 
or program); 

• concurrency control services to ensure that concur- 
rent transactions behave the same way as if run in 
some sequential order; 

• authorization services to ensure that all access to 
and manipulation of  data be in accordance with 
specified constraints on users and programs [18]; 

• integration with support for data communication; 
• integrity services to ensure that database states and 

changes of  state conform to specified rules. 

Certain relational prototypes developed in the early 
seventies fell far short o f  providing all these services 
(possibly for good reasons). Now, however, several re- 
lational systems are available as software products and 
provide all these services with the exception of  the last. 
Present versions of  these products are admittedly weak 
in the provision of  integrity services, but this is rapidly 
being remedied [10]. 

Some relational DBMS actually provide more com- 
plete data services than the non-relational systems. Three 
examples follow. 

As a first example, relational DBMS support the 
extraction of  all meaningful relations from a database, 
whereas non-relational systems support extraction only 
where there exist statically predefmed access paths. 

As a second example of  the additional services pro- 
vided by some relational systems, consider views. A view 
is a virtual relation (table) defined by means of  an 
expression or sequence of  commands. Although not di- 
rectly supported by actual data, a view appears to a user 
as if it were an additional base table kept up-to-date and 
in a state of  integrity with the other base tables. Views 
are useful for permitting application programs and users 
at terminals to interact with constant view structures, 
even when the base tables themselves are undergoing 
structural changes at the logical level (providing that the 
pertinent views are still def'mable from the new base 
tables). They are also useful in restricting the scope of  

3 One should bear in mind that the non-relational ones always 
employ comparatively low level data sublanguages for application 
programming. 
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access of programs and users. Non-relational systems 
either do not support views at all or else support much 
more primitive counterparts, such as the CODASYL 
subschema. 

As a third example, some systems (e.g., SQL/DS [28] 
and its prototype predecessor System R) permit a variety 
of changes to be made to the logical and physical orga- 
nization of the data dynamically--while transactions are 
in progress. These changes rarely require application 
programs to be recoded. Thus, there is less of a program 
maintenance burden, leaving programmers to be more 
productive doing development rather than maintenance. 
This capability is made possible in SQL/DS by the fact 
that the system has complete control over access path 
selection. 

In non-relational systems such changes would nor- 
mally require all other database activities including 
transactions in progress to be brought to a halt. The 
database then remains out of action until the organiza- 
tional changes are completed and any necessary recom- 
piling done. 

6.2 Performance 
Naturally, people would hesitate to use relational 

systems if these systems were sluggish in performance. 
All too often, erroneous conclusions are drawn about the 
performance of relational systems by companng the time 
it might take for one of these systems to execute a 
complex transaction with the time a non-relational sys- 
tem might take to execute an extremely simple transac- 
tion. To arrive at a fair performance comparison, one 
must compare these systems on the same tasks or appli- 
cations. We shah present arguments to show why rela- 
tional systems should be able to compete successfully 
with non-relational systems. 

Good performance is determined by two factors: (1) 
the system must support performance-oriented physical 
data structures; (2) high-level language requests for data 
must be compiled into lower-level code sequences at 
least as good as the average application programmer can 
produce by hand. 

The first step in the argument is that a program 
written in a Cobol-level language can be made to per- 
form efficiently on large databases containing production 
data structured in tabular form with no user-visible 
navigation links between them. This step in the argument 
is supported by the following information [19]: as of 
August 1981, Tandem Computer Corp. had manufac- 
tured and installed 760 systems; of these, over 700 were 
making use of the Tandem ENCOMPASS relational 
database management system to support databases con- 
taining production data. Tandem has committed its own 
manufacturing database to the care of ENCOMPASS. 
ENCOMPASS does not support links between the data- 
base tables, either user-visible (navigation) links or user- 
invisible (access'method) links. 

In the second step of the argument, suppose we take 
the application programs in the above-cited installations 

and replace the database retrieval and manipulation 
statements by statements in a database sublanguage with 
a relational processing capability (e.g., SQL). Clearly, to 
obtain good performance with such a high level lan- 
guage, it is essential that it be compiled into object code 
(instead of being interpreted), and it is essential that that 
object code be efficient. 

Compilation is used in System R and its product 
version SQL/DS. In 1976 Raymond Lode developed-an 
ingenious pre- and post-compiling scheme for coping 
with dynamic changes in access paths [21]. It also copes 
with early (and hence efficient) authorization and integ- 
rity checking (the latter, however, is not yet imple- 
mented). This scheme calls for compiling in a rather 
special way the SQL statements embedded in a host 
language program. This compilation step transforms the 
SQL statements into appropriate CALLs within the 
source program together with access modules containing 
object code. These modules are then stored in the data- 
base for later use at runtime. The code in these access 
modules is generated by the system so as to optimize the 
sequencing of the major operations and the selection of 
access paths to provide runtime effÉciency. After this pre- 
compilation step, the application program is compiled 
by a regular compiler for the pertinent host language. If 
at any subsequent time one or more of the access paths 
is removed and an attempt is made to run the program, 
enough source information has been retained in the 
access module to enable the system to re-compile a new 
access module that exploits the now existing access paths 
without requiring a re-compilation of  the application pro- 
gram. 

Incidentally, the same data sublanguage compiler is 
used on ad hoc queries submitted interactively from a 
terminal and also on queries that are dynamically gen- 
erated during the execution of a program (e.g., from 
parameters submitted interactively). Immediately after 
compilation, such queries are executed and, with the 
exception of the simplest of queries, the performance is 
better than that of an interpreter. 

The generation of access modules (whether at the 
initial compiling or re-compiling stage) entails a quite 
sophisticated optimization scheme [27], which makes use 
of system-maintained statistics that would not normally 
be within the programmer's knowledge. Thus, only on 
the simplest of all transactions would it be possible for 
an average application programmer to compete with this 
optimizer in generation of efficient code. Any attempts 
to compete are bound to reduce the programmer's pro- 
ductivity. Thus, the price paid for extra compile-time 
overhead would seem to be well worth paying. 

Assuming non-linked tabular structures in both cases, 
we can expect SQL/DS to generate code comparable 
with average hand-written code in many simple cases, 
and superior in many complex cases. Many commercial 
transactions are extremely simple. For example, one may 
need to look up a record for a particular railroad wagon 
to fred out where it is or fred the balance in someone's 
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savings account. If suitably fast access paths are sup- 
ported (e.g., hashing), there is no reason why a high-level 
language such as SQL, QUEL, or QBE should result in 
less efficient runtime code for these simple transactions 
than a lower level language, even though such transac- 
tions make little use of the optimizing capability of the 
high-level data sublanguage compiler. 

7. Future Directions 

If we are to use relational database as a foundation 
for productivity, we need to know what sort of develop- 
ments may lie ahead for relational systems. 

Let us deal with near-term developments first. In 
some relational systems stronger support is needed for 
domains and primary keys per suggestions in [10]. As 
already noted, all relational systems need upgrading with 
regard to automatic adherence to integrity constraints. 
Existing constraints on updating join-type views need to 
be relaxed (where theoretically possible), and progress is 
being made on this problem [20]. Support for outer joins 
is needed. 

Marked improvements are being made in optimizing 
technology, so we may reasonably expect further im- 
provements in performance. In certain products, such as 
the ICL CAFS [22] and the Britton-Lee IDM500 [13], 
special hardware support has been implemented. Special 
hardware may help performarice in certain types of 
applications. However, in the majority of applications 
dealing with formatted databases, software-implemented 
relational systems can compete in performance with 
software-implemented non-relational systems. 

At present, most relational systems do not provide 
any special support for engineenng and scientific data- 
bases. Such support, including interfacing with Fortran, 
is clearly needed and can be expected. 

Catalogs in relational systems already consist of ad- 
ditional relations that can be interrogated just like the 
rest of the database using the same query language. A 
natural development that can and should be swiftly put 
in place is the expansion of these catalogs into full- 
fledged active dictionaries to provide additional on-line 
data control. 

Finally, in the near term, we may expect database 
design aids suited for use with relational systems both at 
the logical and physical levels. 

In the longer term we may expect support for rela- 
tional databases distributed over a communications net- 
work [25, 30, 32] and managed in such a way that 
application programs and interactive users can manipu- 
late the data (1) as if all of it were stored at the local 
node--location transparency--and (2) as if no data were 
replicated anywhere--replication transparency. All three 
of the projects cited above are based on the relational 
model. One important reason for this is that relational 
databases offer great decomposition flexibility when 
planning how a database is to be distributed over a 
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network of computer systems, and great recomposition 
power for dynamic combination of decentralized infor- 
mation. By contrast, CODASYL DBTG databases are 
very difficult to decompose and recompose due to the 
entanglement of the owner-member navigation links. 
This property makes the CODASYL approach extremely 
difficult to adapt to a distributed database environment 
and may well prove to be its downfall. A second reason 
for use of the relational model is that it offers concise 
high level data sublanguages for transmitting requests 
for data from node to node. 

The ongoing work in extending the relational model 
to capture in a formal way more meaning of the data 
can be expected to lead to the incorporation of this 
meaning in the database catalog in order to factor it out 
of appl!cation programs and make these programs even 
more concise and simple. Here, we are, of course, talking 
about meaning that is represented in such a way that the 
system can understand it and act upon it. 

Improved theories are being developed for handling 
missing data and inapplicable data (see for example 
[3]). This work should yield improved treatment of null 
values. 

As it stands today, relational database is best suited 
to data with a rather regular or homogeneous structure. 
Can we retain the advantages of the relational approach 
while handling heterogeneous data also? Such data may 
include images, text, and miscellaneous facts. An affirm- 
ative answer is expected, and some research is in progress 
on this subject, but more is needed. 

Considerable research is needed to achieve a rap- 
prochement between database languages and program- 
ming languages. Pascal/R [26] is a good example of work 
in this direction. Ongoing investigations focus on the 
incorporation of abstract data types into database lan- 
guages on the one hand [12] and relational processing 
into programming languages on the other. 

8. Conclusions 

We have presented a series of arguments to support 
the claim that relational database technology offers dra- 
matic improvements in productivity both for end users 
and for application programmers. The arguments center 
on the data independence, structural simplicity, and 
relational processing defined in the relational model and 
implemented in relational database management sys- 
tems. All three of these features simplify the task of 
developing application programs and the formulation of 
queries and updates to be submitted from a terminal. In 
addition, the first feature tends to keep programs viable 
in the face of organizational and descriptive changes in 
the database and therefore reduces the effort that is 
normally diverted into the maintenance of programs. 

Why, then, does the title of this paper suggest that 
relational database provides only a foundation for im- 
oroved productivity and not the total solution? The 

Communications February 1982 
of Volume 25 
the ACM Number  2 



reason is simple: relational database deals only with the 
shared data component of application programs and 
end-user interactions. There are numerous complemen- 
tary technologies that may help with other components 
or aspects, for example, programming languages that 
support relational processing and improved checking of 
data types, improved editors that understand more of the 
language being used, etc. We use the term "foundation," 
because interaction with shared data (whether by pro- 
gram or via terminal) represents the core of so much 
data processing activity. 

The practicality of the relational approach has been 
proven by the test and production installations that are 
already in operation. Accordingly, with relational sys- 
tems we can now look forward to the productivity boost 
that we all hoped DBMS would provide in the first place. 
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