External Sorting

UVic C SC 370

Dr. Daniel M. German

Department of Computer Science

July 2, 2003 Version: 1.1.0

8–1 External Sorting (1.1.0)

CSC 370 dmgerman@uvic.ca

8–2 External Sorting (1.1.0)

CSC 370 dmgerman@uvic.ca

Introduction

The DBMS needs to sort all the time:

- order by
- Eliminating duplicates
- Performing join
- Bulk loading of cluster data and tree indexes

Overview

- ♦ Why do we sort?
- ❖ Why is in-memory sorting different from on-disk sorting?
- How does external merge sort work?

A simple two way sort

- ♣ This is an over simplification of the way the DBMS sorts data.
- We assume we have only 3 pages to our disposal. What do we do with them?

8–3 External Sorting (1.1.0) CSC 370 dmgerman@uvic.ca 8–4 External Sorting (1.1.0) CSC 370 dmgerman@uvic.ca

Two-way sort

- Divide and conquer: divide the file in smaller, sorted subfiles (called runs)
- ♣ First zero:
 - ♦ Read one page at a time.
 - ♦ Sort it in memory (most likely use qsort)
 - ♦ Write page back to disk (run of size 1 page)
- While we still have runs to sort (pass i)
 - ♦ Merge runs from previous pass into runs of twice the size
 - Use one page for reading one run, another page for the other run, and one for writing

8-5 External Sorting (1.1.0)

CSC 370 dmgerman@uvic.ca

8–6 External Sorting (1.1.0)

CSC 370 dmgerman@uvic.ca

External Merge Sort

- Assume we have B buffer pages available in memory and we need to sort N pages
- **♣** Pass 0:
 - ♦ Read in B pages at a time, creating $\lceil N/B \rceil$ runs of B pages each of B pages each
- While we still have runs to sort (pass i)
 - Use B-1 buffer pages for input and use the other page for output: we do a (B-1) way merge in each pass (use B-1 for read B-1 runs, one for writing result)
- See figures 13.4 and 13.5 in book

Two-way sort

- **+** Complexity:
 - lacktriangle Assume 2^k pages
 - Pass i produces 2^{k-i} runs of 2^i pages each
 - \bullet Last pass (k) produces 1 run of 2^k pages
- How many disk accesses?
 - ♦ In each pass we read and write each page once.
 - We have $\lceil log_2 N \rceil + 1$ passes
 - We have to use: $2N(\lceil log_2N \rceil + 1)$ I/O operations
- ❖ See figures 13.2 and 13.3 for an example
- What do we do if we have more buffer space available?

External Merge Sort Complexity

- Complexity:
 - Pass 0 produces $run_0 = \lceil N/B \rceil$ runs
 - Pass 1 produces $run_1 = \lceil run_0/(B-1) \rceil$ runs
 - Pass 2 produces $run_2 = \lceil run_1/(B-1) \rceil$ runs
 - Pass k produces $run_k = \lceil run_{k-1}/(B-1) \rceil = 1$ runs
- Number of passes: $\lceil log_{B-1} run_0 \rceil + 1$
- Ergo: $\lceil log_{B-1} \lceil N/B \rceil \rceil + 1$
- ♣ Again, in each pass we read and write each page, so we use $2N(\lceil log_{B-1} \lceil N/B \rceil \rceil + 1)$ I/O operations

Where are the savings?

N	$\mathbf{B} = 3$	B = 5	$\mathbf{B} = 9$	$\mathbf{B} = 17$	B = 129	B = 257
10^{2}	7	4	3	2	1	1
10^{3}	10	5	4	3	2	2
10^{4}	13	7	5	4	2	2
10^{5}	17	9	6	5	3	3
10^{6}	20	10	7	5	3	3
10^{7}	23	12	8	6	4	3
10^{8}	26	14	9	7	4	4
10^{9}	30	15	10	8	5	4

Sorting can be made faster

- By using more sophisticated algorithms
- By using pre-fetching and clustered IO

8–9 External Sorting (1.1.0)

CSC 370 dmgerman@uvic.ca

8–10 External Sorting (1.1.0)

CSC 370 dmgerman@uvic.ca