
SQL from Applications

UVic C SC 370

Dr. Daniel M. German

Department of Computer Science

June 4, 2003 Version: 1.1.0

6–1 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Overview

✥ Embedded SQL

✥ JDBC

✥ Stored Procedures

6–2 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Accesing data from an application

✥ Most of the time, an application will be the interface between the

database and the user

✥ Almost any programming language can be used to do it
✦ C
✦ Perl
✦ Java
✦ PHP
✦ ASP
✦ Tcl
✦ Python
✦ You name it!

6–3 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

JDBC

✥ Java DataBase Connectivity

✥ JDBC allows database independence at the run-time level

✥ One program can use several databases at the same time

✥ A driver is responsible for the interaction with a particular

DBMS

✥ Drivers are loaded dynamically

✥ IMHO, JDBC is the way to go when speed is not an issue

6–4 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Example

import java.sql.*;

class sailors
{

static public void main(String[] args)
{

try {
// Prepare driver
Class.forName("org.postgresql.Driver");
// connect to the database
Connection connection = DriverManager.getConnection

("jdbc:postgresql:sail3", "dmg", "password");

String sqlCommand = "select sname from Sailors order by sname";
Statement statement = connection.createStatement();
ResultSet result = statement.executeQuery(sqlCommand);
String sName;

while (result.next()) {
sName = result.getString(1);
System.out.println(sName);

}
connection.close();

}
catch (java.lang.Exception ex) {

System.out.println("Connect or execute query exception: " + ex);
ex.printStackTrace();

}
}

}

6–5 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Embedded SQL in C

✥ The idea is to embed SQL into an application written in C

✥ A preprocessor takes care of translating the SQL into host

language primitives and function calls:

✥ Example: select all names of sailors

6–6 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Example

/*
* embedded C sample program
*/
#include <stdio.h>

void My_Exit(void);

EXEC SQL INCLUDE sqlca;

/* Whenever there is an error call error handler */
EXEC SQL WHENEVER SQLERROR DO My_Exit();

int main(int numParms, char* parms[])
{

EXEC SQL BEGIN DECLARE SECTION;
char *c_sname = NULL; /* holds value returned by query */
char c_query_string[256]; /* holds constructed SQL query */
char c_dbName[40], c_userName[20], c_password[20];
int c_rating, c_maxRating;

EXEC SQL END DECLARE SECTION;

int rating;

if (numParms != 3) {
fprintf(stderr, "Usage %s <username> <password>\n", parms[0]);
exit(1);

}
strcpy(c_dbName, "csc370public@postgresql.csc.uvic.ca");
strcpy(c_userName, parms[1]);

6–7 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

strcpy(c_password, parms[2]);

/* connect to the database */

EXEC SQL CONNECT TO :c_dbName USER :c_userName USING :c_password;

/* get a singleton */
EXEC SQL SELECT Max(rating) INTO :c_maxRating FROM sailors;

/* USING CURSORS */
rating = 3;
sprintf(c_query_string, /* create an SQL query string */

"SELECT sname, rating \
FROM sailors WHERE rating >= %d\
ORDER BY rating", rating);

/* Prepare query */
EXEC SQL PREPARE s_sailorName FROM :c_query_string;

/* DECLARE a cursor for that query*/
EXEC SQL DECLARE cursorSailor CURSOR FOR s_sailorName;
EXEC SQL OPEN cursorSailor; /* send the query */

EXEC SQL WHENEVER NOT FOUND DO BREAK; /* Break out of the loop where
no more rows */

while (1) {
EXEC SQL FETCH IN cursorSailor INTO :c_sname, :c_rating;
printf("%s %-3d (max %d)\n", c_sname, c_rating, c_maxRating);

}
EXEC SQL CLOSE cursorSailor; /* CLOSE the cursor */
EXEC SQL COMMIT;
EXEC SQL DISCONNECT; /* disconnect from the database */
return 0;

}

6–8 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

/*
* Error handler: print error and die
*/
void My_Exit(void)
{

fprintf(stderr, "Error in SQL operation: %s\n", sqlca.sqlerrm.sqlerrmc);
exit(1);

}

6–9 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Embedded SQL, how it works

EMBEDDED SQL

EMBEDDED SQL/C

LINKER

EXECUTABLE

LIBRARIES
SQL & COBJECT

C
SOURCE

C

COMPILER

INCLUDES

SOURCE

PREPROCESSOR

CODE

SQL

6–10 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

A Makefile for the program

PSQLLIB=/public/lib
PSQLINC=/public/include

default: sailors

sailors: sailors.c
gcc -g -I ${PSQLINC} -o sailors sailors.c -L ${PSQLLIB} -lecpg

sailors.c: sailors.csql
ecpg $<

6–11 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Declaring Variables

✥ SQL programs can refer to variables defined in the host program.

✥ These variables must be declared between the commands

EXEC SQL BEGIN DECLARE SECTION and

EXEC SQL END DECLARE SECTION

✥ These declarations look like normal C declarations

✥ The use ofc as prefix of the var name is a convention to clarify

they are host variables
EXEC SQL BEGIN DECLARE SECTION;

char *c_sname = NULL; /* holds value returned by query */
char c_query_string[256]; /* holds constructed SQL query */
char c_dbName[40], c_userName[20], c_password[20];
int c_rating, c_maxRating;

EXEC SQL END DECLARE SECTION;

6–12 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Embedding SQL statements

✥ All SQL statements should be clearly delimited. In C you use

EXEC SQL

✥ An SQL statement can be used as a regular statement in C

✥ Any time a SQL statement uses a host variable it should be

prefixed with:

✥ A semicolon; ends the statement

✥ Example:
EXEC SQL
INSERT INTO Sailors VALUES (:c_sname, :c_rating, c_age);

6–13 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Error Handling

✥ To simplify error handling, use the WHENEVER
EXEC SQL WHENEVER [NOT FOUND | SQLERROR]

[CONTINUE | DO c-statement | GOTO stmt];

✥ NOT FOUND: When the last record of a set has been read, do...

✥ SQLERROR: Whenever there is an error, do...

✥ Examples:
EXEC SQL WHENEVER SQLERROR DO My_Exit();
EXEC SQL WHENEVER NOT FOUND DO BREAK;

6–14 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Cursors

✥ C does not cleanly support sets.

✥ Furthermore, the result of a query might have more rows than can

fit in memory.

✥ Cursors allow us to retrieve, from a result set, one row at a time.

✥ Abstraction:
✦ You DECLARE a cursor: prepares the query to be executed
✦ You OPEN a cursor: executes the query and positions the

cursorbefore the first row
✦ You FETCH from a cursor: positions the cursor in thenext

row
✦ You CLOSE the cursor when you are done with it.

6–15 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Cursors...

✥ Example:
rating = 3;
sprintf(c_query_string, /* create an SQL query string */

"SELECT sname, rating \
FROM sailors WHERE rating >= %d\
ORDER BY rating", rating);

/* Prepare query */
EXEC SQL PREPARE s_sailorName FROM :c_query_string;

EXEC SQL DECLARE cursorSailor CURSOR FOR s_sailorName;
EXEC SQL OPEN cursorSailor; /* send the query */
EXEC SQL WHENEVER NOT FOUND DO BREAK; /* Break out of the loop where

no more rows */
while (1) {

EXEC SQL FETCH IN cursorSailor INTO :c_sname, :c_rating;
printf("%s %-3d (max %d)\n", c_sname, c_rating, c_maxRating);

}
EXEC SQL CLOSE cursorSailor; /* CLOSE the cursor */

6–16 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Singletons

✥ When the query returns a singleton, we can avoid using a cursor:
EXEC SQL SELECT Max(rating) INTO :c_maxRating FROM sailors;

EXEC SQL SELECT S.sname, S.age
INTO :c_sname, :c_age
FROM sailors
WHERE S.sid = :c_sid;

6–17 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Cursors...

✥ Form of a cursor declaration:
DECLARE cursorname [INSENSITIVE] [SCROLL] CURSOR

[WITH HOLD]
FOR somequery
[FOR READ ONLY | FOR UPDATE]

✥ A cursor by default isFOR UPDATE and allows the following
(where sinfo is a cursor):
UPDATE Sailors S
SET S.rating = S.rating = 1
WHERE CURRENT of sinfo

✥ A SCROLL cursor allows you to move around in the result set:
EXEC SQL MOVE -3 FROM sinfo;

✥ A INSENSITIVE cursor makes an entire copy of the result set
before the first fetch.

✥ A WITH HOLD cursor allows to create a transaction per row,
instead of a transaction for the entire duration of the cursor.

6–18 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

More examples

From the postgresql documentation:
EXEC SQL CREATE TABLE foo (number int4, ascii char(16));
EXEC SQL CREATE UNIQUE index num1 on foo(number);
EXEC SQL COMMIT;

EXEC SQL INSERT INTO foo (number, ascii) VALUES (9999, ’doodad’);
EXEC SQL COMMIT;

EXEC SQL DELETE FROM foo WHERE number = 9999;
EXEC SQL COMMIT;

EXEC SQL UPDATE foo
SET ascii = ’foobar’
WHERE number = 9999;

EXEC SQL COMMIT;

6–19 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Extending the DBMS

✥ You can extend the functionality of the database usinguser
defined functions(UDFs) andstored procedures(SPs)

✥ UDFs return a value, SPs do not necessarily

✥ They can be written in virtually any host language, including SQL

✥ ok, ok, postgresql does not support SPs in SQL

6–20 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Example

✥ This query counts the number of sailors for a given rating
CREATE FUNCTION CountSailorsWithRating(integer) RETURNS BIGINT AS ’

SELECT Count(*) from Sailors where rating = $1
’ LANGUAGE SQL;

✥ It is used as any other library function:
SELECT DISTINCT rating,

CountSailorsWithRating(rating) AS COUNT
FROM sailors ORDER BY rating DESC;

Same as:
select rating, count(*) from sailors group by rating

ORDER BY rating DESC;

6–21 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

UDFs and SPs

✥ SPs and UDFs can be executed in the DBMS space, saving time

and resources

✥ Stored procedures are good Soft. Eng.

✥ UDFs can be very powerful, but can become very inefficient (see

example in previous page)be careful in their use

6–22 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Triggers

✥ Triggers are procedures that can be automatically invoked in

response to a change in the database

✥ A trigger contains three parts:
✦ Event: What change in the database will activate the trigger
✦ Condition (not always supported): A query to test if the

trigger should be activated
✦ Action: What to do when the trigger isactivatedand the

condition is true

✥ Example:
CREATE TRIGGER SaveOldSailors BEFORE DELETE ON Sailors

FOR EACH ROW
EXECUTE InsertIntoSavedSailors(old.sid, old.sname);

6–23 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Triggers...

✥ General form (in postgresql):
CREATE TRIGGER trigger [BEFORE | AFTER]

[INSERT | DELETE | UPDATE [OR ...]]
ON relation FOR EACH [ROW | STATEMENT]
EXECUTE PROCEDURE procedure(args);

✥ BEFORE | AFTER: when is it called?

✥ INSERT | DELETE | UPDATE: during what operation(s)?

✥ ROW | STATEMENT: call it once per row or once per

statement? (for example, UPDATE ... WHERE is one statement

that can modify zero or more rows)

6–24 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

