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Overview

✥ Embedded SQL

✥ JDBC

✥ Stored Procedures
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Accesing data from an application

✥ Most of the time, an application will be the interface between the

database and the user

✥ Almost any programming language can be used to do it
✦ C
✦ Perl
✦ Java
✦ PHP
✦ ASP
✦ Tcl
✦ Python
✦ You name it!
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JDBC

✥ Java DataBase Connectivity

✥ JDBC allows database independence at the run-time level

✥ One program can use several databases at the same time

✥ A driver is responsible for the interaction with a particular

DBMS

✥ Drivers are loaded dynamically

✥ IMHO, JDBC is the way to go when speed is not an issue
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Example

import java.sql.*;

class sailors
{

static public void main(String[] args)
{

try {
// Prepare driver
Class.forName("org.postgresql.Driver");
// connect to the database
Connection connection = DriverManager.getConnection

("jdbc:postgresql:sail3", "dmg", "password");

String sqlCommand = "select sname from Sailors order by sname";
Statement statement = connection.createStatement();
ResultSet result = statement.executeQuery(sqlCommand);
String sName;

while (result.next()) {
sName = result.getString(1);
System.out.println(sName);

}
connection.close();

}
catch (java.lang.Exception ex) {

System.out.println("Connect or execute query exception: " + ex);
ex.printStackTrace();

}
}

}
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Embedded SQL in C

✥ The idea is to embed SQL into an application written in C

✥ A preprocessor takes care of translating the SQL into host

language primitives and function calls:

✥ Example: select all names of sailors
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Example

/*
* embedded C sample program
*/
#include <stdio.h>

void My_Exit(void);

EXEC SQL INCLUDE sqlca;

/* Whenever there is an error call error handler */
EXEC SQL WHENEVER SQLERROR DO My_Exit();

int main(int numParms, char* parms[])
{

EXEC SQL BEGIN DECLARE SECTION;
char *c_sname = NULL; /* holds value returned by query */
char c_query_string[256]; /* holds constructed SQL query */
char c_dbName[40], c_userName[20], c_password[20];
int c_rating, c_maxRating;

EXEC SQL END DECLARE SECTION;

int rating;

if (numParms != 3) {
fprintf(stderr, "Usage %s <username> <password>\n", parms[0]);
exit(1);

}
strcpy(c_dbName, "csc370public@postgresql.csc.uvic.ca");
strcpy(c_userName, parms[1]);
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strcpy(c_password, parms[2]);

/* connect to the database */

EXEC SQL CONNECT TO :c_dbName USER :c_userName USING :c_password;

/* get a singleton */
EXEC SQL SELECT Max(rating) INTO :c_maxRating FROM sailors;

/* USING CURSORS */
rating = 3;
sprintf(c_query_string, /* create an SQL query string */

"SELECT sname, rating \
FROM sailors WHERE rating >= %d\
ORDER BY rating", rating);

/* Prepare query */
EXEC SQL PREPARE s_sailorName FROM :c_query_string;

/* DECLARE a cursor for that query*/
EXEC SQL DECLARE cursorSailor CURSOR FOR s_sailorName;
EXEC SQL OPEN cursorSailor; /* send the query */

EXEC SQL WHENEVER NOT FOUND DO BREAK; /* Break out of the loop where
no more rows */

while (1) {
EXEC SQL FETCH IN cursorSailor INTO :c_sname, :c_rating;
printf("%s %-3d (max %d)\n", c_sname, c_rating, c_maxRating);

}
EXEC SQL CLOSE cursorSailor; /* CLOSE the cursor */
EXEC SQL COMMIT;
EXEC SQL DISCONNECT; /* disconnect from the database */
return 0;

}
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/*
* Error handler: print error and die
*/
void My_Exit(void)
{

fprintf(stderr, "Error in SQL operation: %s\n", sqlca.sqlerrm.sqlerrmc);
exit(1);

}
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Embedded SQL, how it works

EMBEDDED SQL

EMBEDDED SQL/C

LINKER

EXECUTABLE

LIBRARIES
SQL & COBJECT

C
SOURCE

C

COMPILER

INCLUDES

SOURCE

PREPROCESSOR

CODE

SQL
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A Makefile for the program

PSQLLIB=/public/lib
PSQLINC=/public/include

default: sailors

sailors: sailors.c
gcc -g -I ${PSQLINC} -o sailors sailors.c -L ${PSQLLIB} -lecpg

sailors.c: sailors.csql
ecpg $<
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Declaring Variables

✥ SQL programs can refer to variables defined in the host program.

✥ These variables must be declared between the commands

EXEC SQL BEGIN DECLARE SECTION and

EXEC SQL END DECLARE SECTION

✥ These declarations look like normal C declarations

✥ The use ofc as prefix of the var name is a convention to clarify

they are host variables
EXEC SQL BEGIN DECLARE SECTION;

char *c_sname = NULL; /* holds value returned by query */
char c_query_string[256]; /* holds constructed SQL query */
char c_dbName[40], c_userName[20], c_password[20];
int c_rating, c_maxRating;

EXEC SQL END DECLARE SECTION;
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Embedding SQL statements

✥ All SQL statements should be clearly delimited. In C you use

EXEC SQL

✥ An SQL statement can be used as a regular statement in C

✥ Any time a SQL statement uses a host variable it should be

prefixed with:

✥ A semicolon; ends the statement

✥ Example:
EXEC SQL
INSERT INTO Sailors VALUES (:c_sname, :c_rating, c_age);
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Error Handling

✥ To simplify error handling, use the WHENEVER
EXEC SQL WHENEVER [NOT FOUND | SQLERROR ]

[CONTINUE | DO c-statement | GOTO stmt];

✥ NOT FOUND: When the last record of a set has been read, do...

✥ SQLERROR: Whenever there is an error, do...

✥ Examples:
EXEC SQL WHENEVER SQLERROR DO My_Exit();
EXEC SQL WHENEVER NOT FOUND DO BREAK;
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Cursors

✥ C does not cleanly support sets.

✥ Furthermore, the result of a query might have more rows than can

fit in memory.

✥ Cursors allow us to retrieve, from a result set, one row at a time.

✥ Abstraction:
✦ You DECLARE a cursor: prepares the query to be executed
✦ You OPEN a cursor: executes the query and positions the

cursorbefore the first row
✦ You FETCH from a cursor: positions the cursor in thenext

row
✦ You CLOSE the cursor when you are done with it.
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Cursors...

✥ Example:
rating = 3;
sprintf(c_query_string, /* create an SQL query string */

"SELECT sname, rating \
FROM sailors WHERE rating >= %d\
ORDER BY rating", rating);

/* Prepare query */
EXEC SQL PREPARE s_sailorName FROM :c_query_string;

EXEC SQL DECLARE cursorSailor CURSOR FOR s_sailorName;
EXEC SQL OPEN cursorSailor; /* send the query */
EXEC SQL WHENEVER NOT FOUND DO BREAK; /* Break out of the loop where

no more rows */
while (1) {

EXEC SQL FETCH IN cursorSailor INTO :c_sname, :c_rating;
printf("%s %-3d (max %d)\n", c_sname, c_rating, c_maxRating);

}
EXEC SQL CLOSE cursorSailor; /* CLOSE the cursor */
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Singletons

✥ When the query returns a singleton, we can avoid using a cursor:
EXEC SQL SELECT Max(rating) INTO :c_maxRating FROM sailors;

EXEC SQL SELECT S.sname, S.age
INTO :c_sname, :c_age
FROM sailors
WHERE S.sid = :c_sid;
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Cursors...

✥ Form of a cursor declaration:
DECLARE cursorname [INSENSITIVE] [SCROLL] CURSOR

[WITH HOLD]
FOR somequery
[FOR READ ONLY | FOR UPDATE]

✥ A cursor by default isFOR UPDATE and allows the following
(where sinfo is a cursor):
UPDATE Sailors S
SET S.rating = S.rating = 1
WHERE CURRENT of sinfo

✥ A SCROLL cursor allows you to move around in the result set:
EXEC SQL MOVE -3 FROM sinfo;

✥ A INSENSITIVE cursor makes an entire copy of the result set
before the first fetch.

✥ A WITH HOLD cursor allows to create a transaction per row,
instead of a transaction for the entire duration of the cursor.
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More examples

From the postgresql documentation:
EXEC SQL CREATE TABLE foo (number int4, ascii char(16));
EXEC SQL CREATE UNIQUE index num1 on foo(number);
EXEC SQL COMMIT;

EXEC SQL INSERT INTO foo (number, ascii) VALUES (9999, ’doodad’);
EXEC SQL COMMIT;

EXEC SQL DELETE FROM foo WHERE number = 9999;
EXEC SQL COMMIT;

EXEC SQL UPDATE foo
SET ascii = ’foobar’
WHERE number = 9999;

EXEC SQL COMMIT;
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Extending the DBMS

✥ You can extend the functionality of the database usinguser
defined functions(UDFs) andstored procedures(SPs)

✥ UDFs return a value, SPs do not necessarily

✥ They can be written in virtually any host language, including SQL

✥ ok, ok, postgresql does not support SPs in SQL
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Example

✥ This query counts the number of sailors for a given rating
CREATE FUNCTION CountSailorsWithRating(integer) RETURNS BIGINT AS ’

SELECT Count(*) from Sailors where rating = $1
’ LANGUAGE SQL;

✥ It is used as any other library function:
SELECT DISTINCT rating,

CountSailorsWithRating(rating) AS COUNT
FROM sailors ORDER BY rating DESC;

Same as:
select rating, count(*) from sailors group by rating

ORDER BY rating DESC;
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UDFs and SPs

✥ SPs and UDFs can be executed in the DBMS space, saving time

and resources

✥ Stored procedures are good Soft. Eng.

✥ UDFs can be very powerful, but can become very inefficient (see

example in previous page)be careful in their use

6–22 SQL from Applications (1.1.0) CSC 370 dmgerman@uvic.ca

Triggers

✥ Triggers are procedures that can be automatically invoked in

response to a change in the database

✥ A trigger contains three parts:
✦ Event: What change in the database will activate the trigger
✦ Condition (not always supported): A query to test if the

trigger should be activated
✦ Action: What to do when the trigger isactivatedand the

condition is true

✥ Example:
CREATE TRIGGER SaveOldSailors BEFORE DELETE ON Sailors

FOR EACH ROW
EXECUTE InsertIntoSavedSailors(old.sid, old.sname);
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Triggers...

✥ General form (in postgresql):
CREATE TRIGGER trigger [ BEFORE | AFTER ]

[ INSERT | DELETE | UPDATE [ OR ... ] ]
ON relation FOR EACH [ ROW | STATEMENT ]
EXECUTE PROCEDURE procedure(args);

✥ BEFORE | AFTER: when is it called?

✥ INSERT | DELETE | UPDATE: during what operation(s)?

✥ ROW | STATEMENT: call it once per row or once per

statement? (for example, UPDATE ... WHERE is one statement

that can modify zero or more rows)
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