
SQL

UVic C SC 370

Dr. Daniel M. German

Department of Computer Science

June 3, 2004 Version: 1.1.2

5–1 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Overview

✥ A review of SQL
✦ Basic Select statements
✦ UNION, INTERSECT, EXCEPT
✦ Nested queries
✦ Aggregate operations
✦ GROUP BY and HAVING
✦ NULL
✦ Constraints

5–2 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Basic form of a SQL Query

✥ SQL query:

SELECT [DISTINCT] select-list

FROM from-list

WHERE qualification

✥ Every query must have aSELECT clause

✥ TheFROM specifies a cross product of tables

✥ The optionalWHERE clause specifies selection conditions on the

tables mentioned in theFROM

✥ This query corresponds to a relational algebra expression

involving selection, projections and cross-products.

5–3 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Example

✥ SELECT S.sname, S.age

FROM Sailors S

✥

sname age

Dustin 45
Brutus 33
Lubber 55.5
Andy 25.5
Rusty 35
Horatio 35
Zorba 16
Horatio 35
Art 25.5
Bob 63.5

5–4 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Example, without DISTINCT

✥ This could include several copies of the same row

SELECT S.sname, S.age

FROM Sailors S

✥ This result is known as amultiset
sname age

Dustin 45
Brutus 33
Lubber 55.5
Andy 25.5
Rusty 35
Horatio 35
Zorba 16
Horatio 35
Art 25.5
Bob 63.5

5–5 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Multiset

✥ A Multiset is similar to a set but there could be multiple copies of

each element

✥ Two multisets could have the same elements and still be different

because the number of copies of each element, e.g.{a, b, b} and

{b, a, b} are the same, but{a, a, b} is not.

5–6 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Another Example

✥ (Q11) Find all sailors with a rating above 7
SELECT S.sid, S.sname, S.rating, S.age
FROM Sailors AS S
WHERE S.rating > 7

✥ Notice the use ofAS to as an alternative for an alias
sid sname rating age

31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35
71 Zorba 10 16
74 Horatio 9 35

5–7 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Another Example... using*

✥ * shorthand for “all columns” in the order in which they are

defined in the table schema
✥ Poor programming style. Query changes if the schema changes

SELECT *
FROM Sailors AS S
WHERE S.rating > 7

sid sname rating age

31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35
71 Zorba 10 16
74 Horatio 9 35

5–8 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

SELECT in detail

✥ SELECT does projection

✥ WHERE does selection

✥ The from-list in theFROM clause is list of tables

✥ Theselect-listis a list of expressions involving columns of those

tables (from-list)

✥ Thequalification in theWHERE is a boolean combination of

conditions of the formexpressionop expressionwhereop is

one of:<,<=,=, <>,>=, >

✥ TheDISTINCT is optional

5–9 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

But, what is the meaning of a query?

✥ A query does not tells us how to compute it

✥ The result of a query is arelation, which is amultiset of rows

✥ A conceptual evaluation strategy (easy to understand, but not

necessarily what the database uses–in fact, it is quite inefficient)

1. Compute the cross product of the tables in thefrom-list
2. Delete the rows in the cross-product that fail thequalification

conditions

3. Delete all columns that do not appear in theselect-list
4. If DISTINCT is specified, eliminate duplicate rows

5–10 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Example of Query Evaluation

✥ Q1 Find the names of sailors who have reserved boat number 103
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid= 103;

✥ Assume these instances:

sid bid day

22 101 1998-10-10
58 103 1998-11-12

sid sname rating age

22 Dustin 7 45
31 Lubber 8 55.5
58 Rusty 10 35

5–11 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Query Evaluation...

✥ The first step is to compute the cross product:
sid sname rating age sid bid day

22 Dustin 7 45 22 101 1998-10-10
22 Dustin 7 45 58 103 1998-11-12
31 Lubber 8 55.5 22 101 1998-10-10
31 Lubber 8 55.5 58 103 1998-11-12
58 Rusty 10 35 22 101 1998-10-10
58 Rusty 10 35 58 103 1998-11-12

✥ Now we apply qualification:

S.sid = R.sid AND R.bid = 103
sid sname rating age sid bid day

58 Rusty 10 35 58 103 1998-11-12

5–12 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Query Evaluation...

✥ Finally, we do projection:
sname

Rusty

5–13 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Expressions and Strings in theSELECT

✥ Each item in theselect-listcan be an expression of the form

expression AS columnnamewhereexpressionis any

arithmetic or string expression over columns and constants

✥ column namebecomes the name of the result column

✥ It can also contain aggregates (discussed later)

✥ Some DBMS allow the use of UD (user defined) and library

functions

✥ Example:
SELECT S.sname, S.rating+1 AS rating
FROM Sailors S, Reserves R1, Reserves R2
WHERE S.sid = R1.sid AND S.sid = R2.sid AND

R1.day = R2.day AND R1.bid <> R2.bid

5–14 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Collating Sequences

✥ Character and string operations are done by using an ordering

calledcollating sequence

✥ This allows for multi-byte and foreign languages support

✥ Also, some DBMS use a case-sensitive default collating sequence

(mysql, MS SQL server,the textbook for instance)

5–15 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Pattern Matching

✥ SQL provides very rudimentary pattern matching:

✥ LIKE operator
✦ %: Wild card, match zero or more arbitrary characters
✦ : Match exactly one arbitrary character

✥ ’ AB%’ matches any string that has at least 3 chars, A as second

char, and B as third one.

✥ Example: Q18: Find the ages of sailors whose name begins and

ends with B and has at least 3 characters
SELECT S.age
FROM Sailors S
WHERE S.sname LIKE ’B_%B%’

✥ Notice the use of the % at the end of the string. It matches the

trailing spaces
5–16 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

UNION

✥ Computes theunion between twoSELECT statements

✥ Q5: Find the names of sailors who have reserved a red or a green

boat (or both)
SELECT DISTINCT s.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid

AND (B.color = ’red’ OR B.color = ’green’)

✥ UsingUNION:
SELECT s.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ’red’
UNION
SELECT s.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ’green’

5–17 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

INTERSECT

✥ Computes theintersectionbetween twoSELECT statements

✥ Q6: Find the names of sailors who have reserved both a red and
a green boat
SELECT DISTINCT s.sname
FROM Sailors S, Reserves R1, Reserves R2, Boats B1, Boats B2
WHERE S.sid = R1.sid AND S.sid = R2.sid

AND R1.bid = B1.bid AND R2.bid = B2.bid
AND B1.color = ’red’ AND B2.color = ’green’

✥ UsingINTERSECT:
SELECT s.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ’red’
INTERSECT
SELECT s.sname
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ’green’

✥ This has a bug, can you spot it? See textbook (page 143 for
discussion of the error)

5–18 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

EXCEPT

✥ Computes theset differencebetween twoSELECT statements

✥ Q19: Find the sids of all sailors who have reserved red boats but

not green boats.
SELECT s.sid
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ’red’
EXCEPT
SELECT s.sid
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ’green’

✥ Or the simpler query:
SELECT r.sid
FROM Reserves R, Boats B
WHERE R.bid = B.bid AND B.color = ’red’
EXCEPT
SELECT R.sid
FROM Reserves R, Boats B
WHERE R.bid = B.bid AND B.color = ’green’

5–19 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Nested Queries

✥ In SQL you can embed queries (subqueries) inside queries

✥ Subqueries can include conditions that refer to a relation that
needs to be computed

✥ Subqueries usually appear in theWHERE clause, but can also
appear in theFROM (or HAVING)

✥ Q1: Find the names of the sailors who have reserved boat 103
SELECT s.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid = 103)

✥ Q1: Find the names of the sailors who haveNOT reserved boat

103

✥ ReplaceIN with NOT IN
5–20 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Conceptual Evaluation Strategy

✥ Extend step 2 by recomputing the subquery before testing the

qualification condition

✥ If the subquery has another subquery, we apply the same idea

recursively

5–21 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Multiple Nested Queries

✥ Q2. Find the names of sailors who have reserved a red boat
SELECT s.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid IN (SELECT B.Bid

FROM Boats B
WHERE B.color = ’red’))

✥ IN tests if the first operand (a row) is in its second operand (a

relation)

5–22 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Correlated Nested Queries

✥ The inner query can depend on a value of the current row being
examined

✥ Q1. Find the names of sailors who have reserved boat number

103
SELECT s.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid = 103 AND R.sid = S.sid)

✥ EXISTS tests if a result is not empty

✥ In this example, for each row ofSailorswe tests if the result of
the inner query is non-empty

✥ The existence of S in the subquery is a called a correlation

✥ Note that this is a proper use of the* in theSELECT clause
5–23 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

UNIQUE

✥ UNIQUE returns true if no row appears twice in the answer to a

subquery

✥ UNIQUE of an empty set returnsTRUE

✥ Not supported by postgresql

5–24 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Set-Comparison Operators

✥ Existential qualifiers

✥ op ANY andop ALL, whereop is one of:

<,<=,=, <>,>=, >

✥ Q22. Find sailors whose rating is better than some sailor called

Horatio
SELECT s.sid
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname = ’Horatio’)

5–25 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Set-Comparison Operators...

✥ Q24. Find the sailors with the highest rating:
SELECT s.sid
FROM Sailors S
WHERE S.rating >= ALL (SELECT S2.rating

FROM Sailors S2)

5–26 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Example

✥ Q9. Find the names of sailors who have reserved all boats
SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS ((SELECT B.bid FROM Boats B)

EXCEPT
(SELECT R.bid FROM Reserves R
WHERE R.sid = S.sid))

sname

Dustin

✥ We compute the set of all boats, then we remove:

✥ For each sailor S, the set of boats reserved by S

✥ And for each sailor, we check that this result is empty (that is, the

set of boats minus the set of boats reserved by S is empty)

5–27 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Aggregate Operators

✥ Sometimes we need to compute some a value that depends on

multiple rows

✥ SQL extends relational algebra with 5 aggregate operations, that

can be applied to any column, say A:
✦ COUNT ([DISTINCT] A): Returns the number of

(unique) values of the A column
✦ SUM ([DISTINCT] A): Returns the sum of all (unique)

values of the A column
✦ AVG ([DISTINCT] A): Returns the average of all

(unique) values of the A column
✦ MAX (A): Returns the maximum value of the A column
✦ MIN (A): Returns the maximum value of the A column

5–28 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Aggregation Example

✥ Q27.Find the name and age of the oldest sailor
SELECT S.sname, S.age
FROM Sailors S
WHERE S.age = (SELECT MAX (S2.Age)

FROM Sailors S2)

✥ In this case, the result of the subquery is a relation of one row and

one column, the DBMS translates it into a value

✥ The following query would be illegal:
SELECT S.sname, MAX(S.age)
FROM Sailors S

✥ If a SELECT uses aggregation, it must useonly aggregate

operations (unless the query containsGROUP BY)

5–29 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Aggregation Example

✥ The following query counts the number of rows in the table

✥ Q28 Count the number of sailors
SELECT COUNT(*) as Total
FROM Sailors S

✥ Q28 Count the number of different sailor names
SELECT COUNT(DISTINCT sname) as Total
FROM Sailors S

5–30 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

GROUP BY and HAVING

✥ Sometimes we need to aggregate subsets of the relation

✥ Example:Q31. Find the age of the youngest sailor for each

rating level

✥ Instead of writing one query for each rating (rather tediousand

error prone) we can useGROUP BY
SELECT S.rating, MIN (S.age)
FROM Sailors S
GROUP BY S.rating

5–31 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

GROUP BY

✥ General format:
SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

✥ select-list: columns and aggregate operations.Every column in

the select-list should also appear in the grouping list.

✥ The expressions in thegroup-qualification in theHAVING must

have asinglevalue per group:
✦ A column here must appear as the argument to the

aggregation operator
✦ or it must also appear in thegrouping-list

✥ If GROUP BY is omitted, the table is considered a single group.

5–32 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Semantics ofGROUP BY, HAVING query

1. First step, create cross-product of tables

2. Apply qualification ofWHERE

3. Eliminate unnecessary columns (keep those columns mentioned

in theSELECT, GROUP BY andHAVING)

4. Sort the table according to theGROUP BY

5. Apply the group qualification in the having clause

6. Apply the aggregation and theSELECT and generate one row

7. Optional: IfSELECT DISTINCT then remove duplicates

5–33 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Semantics ofGROUP BY, HAVING ...

✥ Q32Find the age of the youngest sailor who is eligible to vote (at

least 18 years old) for each rating level with at least 2 sailors
SELECT S.rating, MIN (S.age) AS MinAge
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT(*) > 1

5–34 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Semantics ofGROUP BY, HAVING ...

1 First step, create cross-product of tables. Because only one

relation is involved, then return original relation
sid sname rating age

22 Dustin 7 45
29 Brutus 1 33
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35
64 Horatio 7 35
71 Zorba 10 16
74 Horatio 9 35
85 Art 3 25.5
95 Bob 3 63.5

5–35 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Semantics ofGROUP BY, HAVING ...

2 Apply qualification ofWHERE:
WHERE S.age >= 18

sid sname rating age

22 Dustin 7 45
29 Brutus 1 33
31 Lubber 8 55.5
32 Andy 8 25.5
58 Rusty 10 35
64 Horatio 7 35
74 Horatio 9 35
85 Art 3 25.5
95 Bob 3 63.5

5–36 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Semantics ofGROUP BY, HAVING ...

3 Eliminate unnecessary columns (keep those columns mentioned

in theSELECT, GROUP BY andHAVING): rating, age
rating age

7 45
1 33
8 55.5
8 25.5
10 35
7 35
9 35
3 25.5
3 63.5

5–37 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Semantics ofGROUP BY, HAVING ...

4 Sort the table according to theGROUP BY
GROUP BY S.rating

rating age

1 33
3 25.5
3 63.5
7 45
7 35
8 55.5
8 25.5
9 35
10 35

5–38 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Semantics ofGROUP BY, HAVING ...

5 Apply the group qualification in the having clause
HAVING COUNT(*) > 1

rating age

3 25.5
3 63.5
7 45
7 35
8 55.5
8 25.5

✥ Note thatWHERE happensbeforeHAVING

5–39 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Semantics ofGROUP BY, HAVING ...

6 Apply the aggregation and theSELECT and generate one row:
SELECT S.rating, MIN (S.age)

✥ This is the result for this query
rating minage

3 25.5
7 35
8 25.5

7 Optional: If SELECT DISTINCT then remove duplicates

5–40 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Another example

SELECT DISTINCT MIN (S.age) AS MinAge
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT(*) > 1

minage

25.5
35

5–41 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

More aggregate queries

✥ Q33. For each red boat, find the number of reservations for this

boat
SELECT B.bid, COUNT(*) AS reservationcount
FROM Boats B, Reserves R
WHERE R.bid = B.bid AND B.color = ’red’
GROUP BY B.bid

bid reservationcount

102 3
104 2

5–42 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

More aggregate queries...

✥ This query is illegal:
SELECT B.bid, COUNT(*) AS reservationcount
FROM Boats B, Reserves R
WHERE R.bid = B.bid
GROUP BY B.bid
HAVING B.color = ’red’

✦ only columns that appear in theGROUP BY can appear in
the HAVING clause

✦ Unless they appear as arguments to an aggregate in the
HAVING clause

5–43 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

NULL values

✥ Remember,NULL means a value isunknown

✥ What happens when we compare a value againstNULL?
✦ The result of<,<=,=, <>,>=, > is NULL if one operand

is NULL
✦ To test if a value is (not) null useIS NULL (IS NOT

NULL)

✥ Arithmetic operations returnNULL if one of their arguments is

NULL

5–44 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Boolean operations with NULL

✥ Boolean operations have to be extended to support anunknown
value (a value thatIS NULL)

✥ In the following table,a can be unknown
AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

NOT TRUE FALSE UNKNOWN
FALSE TRUE UNKNOWN

5–45 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

More on NULL

✥ Aggregate operations discardNULL values
✦ In this case, theNULL values should be discarded first
✦ If they are applied only toNULL values, the result isNULL

(with the exception ofCOUNT)

✥ Impact onWHERE:
✦ Any row that is NULL is also eliminated (row does not

evaluate to TRUE)
✦ This has impact inEXISTS

✥ Duplicates:
✦ Two rows are identical if their corresponding columns are

equal or are NULL
✦ This definition avoids the problem of comparingNULL vs.

NULL (what is the result?)

5–46 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Outer Joins

✥ Outer Join: A variant of the join operation that relies onNULL

values

✥ Example:Sailos ./c Reserves

✥ Tuples in Sailors that do not match a row in Reserves do not

appear in the result

✥ In an outer join, Sailors rows without a matching Reserves row

appear exactly once in the result, with the columns from Reserves

assignedNULL values

5–47 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Variations of Outer Joins

✥ Left outer join of S and R shows every single S row, filling the

unmatched rows withNULL

✥ Right outer join of S and R shows every single R row, filling the

unmatched rows withNULL

✥ Full outer join of S and R shows every single S and R row,

filling the unmatched rows withNULL

5–48 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Example

✥ Natural Join
SELECT s.sid, R.bid
FROM Sailors S NATURAL JOIN Reserves R

✥ Left Outer Join
SELECT s.sid, R.bid
FROM Sailors S NATURAL LEFT OUTER JOIN Reserves R

✥ Right Outer Join
SELECT s.sid, R.bid
FROM Sailors S NATURAL RIGHT OUTER JOIN Reserves R

✥ Full Outer Join
SELECT s.sid, R.bid
FROM Sailors S NATURAL FULL OUTER JOIN Reserves R

5–49 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Example...

✥ Results of previous queries

sid bid

22 101
22 102
22 103
22 104
31 102
31 103
31 104
64 101
64 102
74 103

sid bid

22 101
22 102
22 103
22 104
29
31 102
31 103
31 104
32
58
64 101
64 102
71
74 103
85
95

sid bid

22 101
22 102
22 103
22 104
31 102
31 103
31 104
64 101
64 102
74 103

sid bid

22 101
22 102
22 103
22 104
29
31 102
31 103
31 104
32
58
64 101
64 102
71
74 103
85
95

Natural Join Left Outer Join Right Outer Join Full Outer Join

5–50 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

Complex Integrity Constraints

✥ We have learn how to specify constraints on the keys of a table

✥ But what about a constraint on the values that a given row in a

table can take?

✥ For that we usetable constraints

✥ Example: we want to restrict a rating to values between 1 and 10.
CREATE TABLE Sailors (sid INTEGER,

sname CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1 AND rating <= 10))

5–51 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

A more complex example

✥ We want to constraint that theInterlakeboats cannot be reserved:
create table Reserves (

sid INTEGER,
bid INTEGER,
day DATE,
PRIMARY KEY (sid, bid, day),
FOREIGN KEY (sid) REFERENCES Sailors

ON DELETE CASCADE,
FOREIGN KEY (bid) REFERENCES Boats

ON DELETE CASCADE,
CONSTRAINT noInterlakeRes
CHECK (’Interlake’ <> (SELECT B.Bname

FROM Boats B
WHERE B.bid = Reserves.bid)))

✥ Unfortunately postgresql does not support subqueries in the

CHECK expression

5–52 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

CHECK

✥ The condition of the check has to be a valid expression evaluating

to a boolean result.

✥ Every time a row is inserted o modified, theCHECK expression is

evaluated.

5–53 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

You can create your own domains/types

✥ CREATE DOMAIN
CREATE DOMAIN ratingval INTEGER DEFAULT 1

CHECK (VALUE >= 1 AND VALUE <= 10)
CREATE DOMAIN counterval INTEGER DEFAULT 1

CHECK (VALUE >= 0)

✥ Not supported by postgresql

✥ Once defined, you use it as any other type in aCREATE TABLE:
rating ratingval,

✥ Internally, theDOMAIN behaves just like the underlying type used

to define it, ie. we can compareratingval andcounterval

variables (they are just integers)

✥ Ideally, we would like to get an error when we compare two

different domain variables.

5–54 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

CREATE TYPE

✥ SQL:1999 introduces the notion ofdistinct types
CREATE DOMAIN ratingval INTEGER DEFAULT 1

CHECK (VALUE >= 1 AND VALUE <= 10)
CREATE DOMAIN counterval INTEGER DEFAULT 1

CHECK (VALUE >= 0)

✥ These statements create two new types:ratingval andcounterval

✥ Not supported by postgresql

✥ Now we cannot combine integers with variables of these types.

integer,ratingval andcountervalare treated as totally different

and incompatible types between each other.

5–55 SQL (1.1.2) CSC 370 dmgerman@uvic.ca

