Relational Algebra and Calculus

UVic C SC 370

Dr. Daniel M. German

Department of Computer Science

May 27, 2003 Version: 1.1.1

Overview

- ♣ The mathematical foundation of query languages such as SQL
- Relational Algebra and Calculus, and why they are important
- Basic algebra operators

Preliminaries

The Examples in this chapter will use the following schema

Sailors (sid: integer, sname: string, rating: integer, age: read)

Boats(bid: integer, bname: string, color: string)

Reserves(sid: integer, bid: integer, day: date)

Instances used

sid	sname	rating	age
22	Dustin	7	45
31	Lubber	8	55.5
58	Rusty	10	35

(a) Instance S1 of Sailors

sid	sname	rating	age
28	yuppy	9	35
31	Lubber	8	55.5
44	guppy	5	35
58	Rusty	10	35

(b) Instance S2 of Sailors

sid	bid	day
22	101	1996-10-10
58	103	1996-11-12

(c) Instance R1 of Reserves

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

(d) Instance B1 of Boats

Relational Algebra

- * Relational algebra (RA) is a query language associated with the relational model
- Every operator in RA takes one or two relations as parameters and return a relation
- * A relational algebra expression is recursively defined to be a
 - * relation,
 - **a unary algebra operator** applied to a **single** expression, or
 - * a binary algebra operator applied to two expressions
- * Basic operators:
 - Selection, projection, union, cross-product, and difference
- Procedural

Selection and Projection

- \bullet σ : selects rows from a table
- * Examples:

$$\sigma_{rating>8}(S2)$$

sid	sname	rating	age
28	yuppy	9	35
58	Rusty	10	35

- The selection operation uses a selection condition
- \clubsuit It is usually a boolean expression: $<, <=, =, \neq, >=, >, \land, \lor$
- * Reference to an attribute: by position (relation.i, i) or by name (relation.name, name)

Projection

- * Allows us to extract columns from a relation
- * Examples:

 $\pi_{sname,rating}(S2)$

sname	rating
yuppy	9
Lubber	8
guppy	5
Rusty	10

$$\pi_{age}(S2)$$

age
35
55.5

Combining Both

 $\pi_{sname,rating}(\sigma_{rating}) (S2)$

sname	rating	
yuppy	9	
Rusty	10	

Union

- $R \cup S$ returns a relation which is the set union of R and S
- R and S should be union compatible:
 - ♦ They have the same number of fields
 - **♦** The corresponding fields have the same **domains**
- \clubsuit For convenience we assume the result inherits names from R (the schema of $R \cup S$ is the schema of R)

 $S1 \cup S2$

sid	sname	rating	age
22	Dustin	7	45
28	yuppy	9	35
31	Lubber	8	55.5
44	guppy	5	35
58	Rusty	10	35

Intersection

- $R \cap S$ returns a relation which contains the tuples that are both in R and S
- * R and S should be union compatible

 $S1 \cap S2$

sid	sname	rating	age
31	Lubber	8	55.5
58	Rusty	10	35

Set Difference

- R S returns a relation which contains the tuples that are both in R but not in S
- * R and S should be union compatible

$$S1 - S2$$

sid	sname	rating	age
22	Dustin	7	45

Cross Product

- $R \times S$ returns a relation instance whose schema contains all fields of R (in the same order as in R) followed by all the fields in S (in the same order as in S)
- The result contains one tuple $\langle r,s\rangle$ (concatenation of tuples r and s) for each pair of tuples $r\in R, s\in S$

$$S1 \times R1$$

(sid)	sname	rating	age	(sid)	bid	day
22	Dustin	7	45	22	101	1996-10-10
22	Dustin	7	45	58	103	1996-11-12
31	Lubber	8	55.5	22	101	1996-10-10
31	Lubber	8	55.5	58	103	1996-11-12
58	Rusty	10	35	22	101	1996-10-10
58	Rusty	10	35	58	103	1996-11-12

Renaming

- ❖ When operating in more than one table, name conflicts can arise
- \clubsuit renaming operator ρ renames the fields of a relation
- Φ $\rho(R(\bar{F})E)$ takes an expression E and returns a new instance relation called R
- * R contains same columns as E, but some fields are renamed

Renaming

* R contains same columns as E, but some fields are renamed

 \clubsuit Example: $\rho(C(1 \to sid1, 5 \to sid2), S1 \times R1)$ returns:

sid1	sname	rating	age	sid2	bid	day
22	Dustin	7	45	22	101	1996-10-10
22	Dustin	7	45	58	103	1996-11-12
31	Lubber	8	55.5	22	101	1996-10-10
31	Lubber	8	55.5	58	103	1996-11-12
58	Rusty	10	35	22	101	1996-10-10
58	Rusty	10	35	58	103	1996-11-12

With schema:

C (sid1: integer, sname: string, rating: integer,

age: read, sid2: integer, bid: integer, day: date)

Other operators

- ♣ As in set theory, other operators can be added by combining the current ones
- \clubsuit Even \cap is redundant: $R \cap S = R (R S)$

Joins

- The join operation is the most useful operation in relational algebra
- ♣ It can be defined with cross product and selection, projection
- ♣ It is important to do joins without materializing the cross product
- There exist several variants of joins:
 - Condition Join
 - Equijoin
 - **♦** Natural Join

Condition Joins

* Essentially, a select of a cross product:

$$R \bowtie_c S = \sigma_c(R \times S)$$

 \clubsuit Example: $S1 \bowtie_{S1.sid < R1.sid} R1$

(sid)	sname	rating	age	(sid)	bid	day
22	Dustin	7	45	58	103	1996-11-12
31	Lubber	8	55.5	58	103	1996-11-12

Equijoin

- * A special case of join when the join condition consists **only** of a conjunction of **equalities** of the form R.name1 = S.name2
- \clubsuit There is redundancy in keeping both attributes in the relation, so S.name2 is dropped
- \clubsuit Example: $S1 \bowtie_{S1.sid=R1.sid} R1$

sid	sname	rating	age	bid	day
22	Dustin	7	45	101	1996-10-10
58	Rusty	10	35	103	1996-11-12

Natural Join

- * A natural join is a equijoin in which equalities are specified on all fields that have the same name
- ♣ In this case we simply omit the condition
- **The result does not have repeated field names**
- \clubsuit Example: $S1 \bowtie R1 = S1 \bowtie_{S1.sid=R1.sid} R1$

sid	sname	rating	age	bid	day
22	Dustin	7	45	101	1996-10-10
58	Rusty	10	35	103	1996-11-12

♣ If the two relations have no common attributes, then, the result is the cross product

Division

- ♣ It is a complex operator
- Useful in situations such as: find the sailors who have reserved all the boats
- \clubsuit For relations A and B, A/B is the largest relation such that $(A/B) \times B \subseteq A$
- **Definition:**

$$A/B = \{ \langle x \rangle | \forall y \ s.t. \ \langle y \rangle \in B, \exists \langle x, y \rangle \in A \}$$

Examples of Division

- Bi are parts
- A are the suppliers and the parts the supply
- ♣ A/Bi are those suppliers who supply all parts listed in Bi

s1 s2
s2
_
s3
s4
sno
s1
s4
sno
s1

Relational Calculus

- ♣ It is an alternative to relational algebra
- Declarative
- ♣ The variant or Relational Calculus here presented is TRC (tuple relational calculus)

Tuple Relational Calculus

- ♣ A tuple variable takes as a value a set of tuples with the same relation schema
- \clubsuit A TRC query has the form: $\{T | p(T)\}$
- \clubsuit T is a tuple variable bound by the predicate p(T)
- * TRC is a subset of first order logic
- Example: find all sailors with a ranking above 7

$$\{S|S \in Sailors \land S.Rating > 7\}$$

Formally

- \clubsuit Let Rel be a relation name, R and S tuple variables with attributes R.a, S.b correspondingly
- \bullet op denotes an operator in the set $\{<,>,=,\leq,\geq,\neq\}$
- * An atomic formula is one of the following:
 - \bullet $R \in Rel$
 - $Rac{1}{2}$ $Rac{1}{2}$ $Rac{1}{2}$
 - \clubsuit R.a op constant or constant op R.a

Formally...

- \clubsuit A **formula** is recursively defined as one of the following, where p and q are themselves formulae:
 - any atomic formula

 - $\Rightarrow \exists R(p(R)), \text{ where R is a tuple}$
 - $\bigstar \forall R(p(R))$, where R is a tuple
- Semantics of TRC
 - **The answer** to a TRC query $\{T|p(T)\}$ is the set of all tuples t for which p(T) is true

Examples

♣ Find the sailor name, boat id, and reservation date for each reservation

$$\{P|\exists R \in Reserves \exists S \in Sailors$$

$$(R.sid = S.sid \land$$

$$P.bid = R.bid \land P.day = R.day \land P.sname = S.sname)\}$$

sname	bid	day
Dustin	101	1996-10-10
Rusty	103	1996-11-12

Examples...

Find the names of sailors who have reserved boat 103

$$\{P|\exists R \in Reserves \exists S \in Sailors \ (R.sid = S.sid \land R.bid = 103 \land P.sname = S.sname)\}$$

sname	bid	day
Dustin	101	1996-10-10
Rusty	103	1996-11-12

Examples...

Find the names of sailors who have reserved all boats

$$\{P|\exists S \in Sailors \quad \forall B \in Boats \\ (\exists R \in Reserves(R.sid = S.sid \land B.bid = R.bid \land \\ P.sname = S.sname))\}$$

- * "Find sailors S such that for all boats B there is a Reserves tuple showing that sailor S has reserved boat B"
- This query is equivalent to the division operator:

$$\rho(Tempsids, (\pi_{sid,bid}Reserves)/(\pi_{bid}Boats))$$

$$\pi_{sname}(Tempsids \bowtie Sailors)$$

Further Reading

- ♣ 4.2.6 Examples of Relational Algebra Queries
- ♣ 4.3.1 Examples of TRC queries