Relational Algebra and Calculus #### UVic C SC 370 Dr. Daniel M. German Department of Computer Science May 27, 2003 Version: 1.1.1 #### **Overview** - ♣ The mathematical foundation of query languages such as SQL - Relational Algebra and Calculus, and why they are important - Basic algebra operators #### **Preliminaries** The Examples in this chapter will use the following schema Sailors (sid: integer, sname: string, rating: integer, age: read) Boats(bid: integer, bname: string, color: string) Reserves(sid: integer, bid: integer, day: date) ### **Instances used** | sid | sname | rating | age | |-----|--------|--------|------| | 22 | Dustin | 7 | 45 | | 31 | Lubber | 8 | 55.5 | | 58 | Rusty | 10 | 35 | (a) Instance S1 of Sailors | sid | sname | rating | age | |-----|--------|--------|------| | 28 | yuppy | 9 | 35 | | 31 | Lubber | 8 | 55.5 | | 44 | guppy | 5 | 35 | | 58 | Rusty | 10 | 35 | (b) Instance S2 of Sailors | sid | bid | day | |-----|-----|------------| | 22 | 101 | 1996-10-10 | | 58 | 103 | 1996-11-12 | (c) Instance R1 of Reserves | bid | bname | color | |-----|-----------|-------| | 101 | Interlake | blue | | 102 | Interlake | red | | 103 | Clipper | green | | 104 | Marine | red | (d) Instance B1 of Boats ### Relational Algebra - * Relational algebra (RA) is a query language associated with the relational model - Every operator in RA takes one or two relations as parameters and return a relation - * A relational algebra expression is recursively defined to be a - * relation, - **a unary algebra operator** applied to a **single** expression, or - * a binary algebra operator applied to two expressions - * Basic operators: - Selection, projection, union, cross-product, and difference - Procedural ### **Selection and Projection** - \bullet σ : selects rows from a table - * Examples: $$\sigma_{rating>8}(S2)$$ | sid | sname | rating | age | |-----|-------|--------|-----| | 28 | yuppy | 9 | 35 | | 58 | Rusty | 10 | 35 | - The selection operation uses a selection condition - \clubsuit It is usually a boolean expression: $<, <=, =, \neq, >=, >, \land, \lor$ - * Reference to an attribute: by position (relation.i, i) or by name (relation.name, name) # **Projection** - * Allows us to extract columns from a relation - * Examples: $\pi_{sname,rating}(S2)$ | sname | rating | |--------|--------| | yuppy | 9 | | Lubber | 8 | | guppy | 5 | | Rusty | 10 | $$\pi_{age}(S2)$$ | age | |------| | 35 | | 55.5 | # **Combining Both** $\pi_{sname,rating}(\sigma_{rating}) (S2)$ | sname | rating | | |-------|--------|--| | yuppy | 9 | | | Rusty | 10 | | #### Union - $R \cup S$ returns a relation which is the set union of R and S - R and S should be union compatible: - ♦ They have the same number of fields - **♦** The corresponding fields have the same **domains** - \clubsuit For convenience we assume the result inherits names from R (the schema of $R \cup S$ is the schema of R) $S1 \cup S2$ | sid | sname | rating | age | |-----|--------|--------|------| | 22 | Dustin | 7 | 45 | | 28 | yuppy | 9 | 35 | | 31 | Lubber | 8 | 55.5 | | 44 | guppy | 5 | 35 | | 58 | Rusty | 10 | 35 | #### Intersection - $R \cap S$ returns a relation which contains the tuples that are both in R and S - * R and S should be union compatible $S1 \cap S2$ | sid | sname | rating | age | |-----|--------|--------|------| | 31 | Lubber | 8 | 55.5 | | 58 | Rusty | 10 | 35 | ### **Set Difference** - R S returns a relation which contains the tuples that are both in R but not in S - * R and S should be union compatible $$S1 - S2$$ | sid | sname | rating | age | |-----|--------|--------|-----| | 22 | Dustin | 7 | 45 | #### **Cross Product** - $R \times S$ returns a relation instance whose schema contains all fields of R (in the same order as in R) followed by all the fields in S (in the same order as in S) - The result contains one tuple $\langle r,s\rangle$ (concatenation of tuples r and s) for each pair of tuples $r\in R, s\in S$ $$S1 \times R1$$ | (sid) | sname | rating | age | (sid) | bid | day | |-------|--------|--------|------|-------|-----|------------| | 22 | Dustin | 7 | 45 | 22 | 101 | 1996-10-10 | | 22 | Dustin | 7 | 45 | 58 | 103 | 1996-11-12 | | 31 | Lubber | 8 | 55.5 | 22 | 101 | 1996-10-10 | | 31 | Lubber | 8 | 55.5 | 58 | 103 | 1996-11-12 | | 58 | Rusty | 10 | 35 | 22 | 101 | 1996-10-10 | | 58 | Rusty | 10 | 35 | 58 | 103 | 1996-11-12 | ### Renaming - ❖ When operating in more than one table, name conflicts can arise - \clubsuit renaming operator ρ renames the fields of a relation - Φ $\rho(R(\bar{F})E)$ takes an expression E and returns a new instance relation called R - * R contains same columns as E, but some fields are renamed ### Renaming * R contains same columns as E, but some fields are renamed \clubsuit Example: $\rho(C(1 \to sid1, 5 \to sid2), S1 \times R1)$ returns: | sid1 | sname | rating | age | sid2 | bid | day | |------|--------|--------|------|------|-----|------------| | 22 | Dustin | 7 | 45 | 22 | 101 | 1996-10-10 | | 22 | Dustin | 7 | 45 | 58 | 103 | 1996-11-12 | | 31 | Lubber | 8 | 55.5 | 22 | 101 | 1996-10-10 | | 31 | Lubber | 8 | 55.5 | 58 | 103 | 1996-11-12 | | 58 | Rusty | 10 | 35 | 22 | 101 | 1996-10-10 | | 58 | Rusty | 10 | 35 | 58 | 103 | 1996-11-12 | #### **With schema:** C (sid1: integer, sname: string, rating: integer, age: read, sid2: integer, bid: integer, day: date) ### Other operators - ♣ As in set theory, other operators can be added by combining the current ones - \clubsuit Even \cap is redundant: $R \cap S = R (R S)$ #### **Joins** - The join operation is the most useful operation in relational algebra - ♣ It can be defined with cross product and selection, projection - ♣ It is important to do joins without materializing the cross product - There exist several variants of joins: - Condition Join - Equijoin - **♦** Natural Join ### **Condition Joins** * Essentially, a select of a cross product: $$R \bowtie_c S = \sigma_c(R \times S)$$ \clubsuit Example: $S1 \bowtie_{S1.sid < R1.sid} R1$ | (sid) | sname | rating | age | (sid) | bid | day | |-------|--------|--------|------|-------|-----|------------| | 22 | Dustin | 7 | 45 | 58 | 103 | 1996-11-12 | | 31 | Lubber | 8 | 55.5 | 58 | 103 | 1996-11-12 | ## Equijoin - * A special case of join when the join condition consists **only** of a conjunction of **equalities** of the form R.name1 = S.name2 - \clubsuit There is redundancy in keeping both attributes in the relation, so S.name2 is dropped - \clubsuit Example: $S1 \bowtie_{S1.sid=R1.sid} R1$ | sid | sname | rating | age | bid | day | |-----|--------|--------|-----|-----|------------| | 22 | Dustin | 7 | 45 | 101 | 1996-10-10 | | 58 | Rusty | 10 | 35 | 103 | 1996-11-12 | #### **Natural Join** - * A natural join is a equijoin in which equalities are specified on all fields that have the same name - ♣ In this case we simply omit the condition - **The result does not have repeated field names** - \clubsuit Example: $S1 \bowtie R1 = S1 \bowtie_{S1.sid=R1.sid} R1$ | sid | sname | rating | age | bid | day | |-----|--------|--------|-----|-----|------------| | 22 | Dustin | 7 | 45 | 101 | 1996-10-10 | | 58 | Rusty | 10 | 35 | 103 | 1996-11-12 | ♣ If the two relations have no common attributes, then, the result is the cross product #### **Division** - ♣ It is a complex operator - Useful in situations such as: find the sailors who have reserved all the boats - \clubsuit For relations A and B, A/B is the largest relation such that $(A/B) \times B \subseteq A$ - **Definition:** $$A/B = \{ \langle x \rangle | \forall y \ s.t. \ \langle y \rangle \in B, \exists \langle x, y \rangle \in A \}$$ ### **Examples of Division** - Bi are parts - A are the suppliers and the parts the supply - ♣ A/Bi are those suppliers who supply all parts listed in Bi | s1
s2 | |----------| | s2 | | _ | | s3 | | s4 | | | | sno | | s1 | | s4 | | | | sno | | s1 | | | #### **Relational Calculus** - ♣ It is an alternative to relational algebra - Declarative - ♣ The variant or Relational Calculus here presented is TRC (tuple relational calculus) ### **Tuple Relational Calculus** - ♣ A tuple variable takes as a value a set of tuples with the same relation schema - \clubsuit A TRC query has the form: $\{T | p(T)\}$ - \clubsuit T is a tuple variable bound by the predicate p(T) - * TRC is a subset of first order logic - Example: find all sailors with a ranking above 7 $$\{S|S \in Sailors \land S.Rating > 7\}$$ ### **Formally** - \clubsuit Let Rel be a relation name, R and S tuple variables with attributes R.a, S.b correspondingly - \bullet op denotes an operator in the set $\{<,>,=,\leq,\geq,\neq\}$ - * An atomic formula is one of the following: - \bullet $R \in Rel$ - $Rac{1}{2}$ $Rac{1}{2}$ $Rac{1}{2}$ - \clubsuit R.a op constant or constant op R.a ### Formally... - \clubsuit A **formula** is recursively defined as one of the following, where p and q are themselves formulae: - any atomic formula - $\Rightarrow \exists R(p(R)), \text{ where R is a tuple}$ - $\bigstar \forall R(p(R))$, where R is a tuple - Semantics of TRC - **The answer** to a TRC query $\{T|p(T)\}$ is the set of all tuples t for which p(T) is true ### **Examples** ♣ Find the sailor name, boat id, and reservation date for each reservation $$\{P|\exists R \in Reserves \exists S \in Sailors$$ $$(R.sid = S.sid \land$$ $$P.bid = R.bid \land P.day = R.day \land P.sname = S.sname)\}$$ | sname | bid | day | |--------|-----|------------| | Dustin | 101 | 1996-10-10 | | Rusty | 103 | 1996-11-12 | ### Examples... # Find the names of sailors who have reserved boat 103 $$\{P|\exists R \in Reserves \exists S \in Sailors \ (R.sid = S.sid \land R.bid = 103 \land P.sname = S.sname)\}$$ | sname | bid | day | |--------|-----|------------| | Dustin | 101 | 1996-10-10 | | Rusty | 103 | 1996-11-12 | ### Examples... # Find the names of sailors who have reserved all boats $$\{P|\exists S \in Sailors \quad \forall B \in Boats \\ (\exists R \in Reserves(R.sid = S.sid \land B.bid = R.bid \land \\ P.sname = S.sname))\}$$ - * "Find sailors S such that for all boats B there is a Reserves tuple showing that sailor S has reserved boat B" - This query is equivalent to the division operator: $$\rho(Tempsids, (\pi_{sid,bid}Reserves)/(\pi_{bid}Boats))$$ $$\pi_{sname}(Tempsids \bowtie Sailors)$$ ## **Further Reading** - ♣ 4.2.6 Examples of Relational Algebra Queries - ♣ 4.3.1 Examples of TRC queries