Introduction to Database Design

UVic C SC 370

Dr. Daniel M. German

Department of Computer Science

May 5, 2004 Version: 1.1.1

2-1 Introduction to Database Design (1.1.1)

CSC 370 dmgerman@uvic.ca

2-2 Introduction to Database Design (1.1.1)

CSC 370 dmgerman@uvic.ca

ER Model

- The Entity-Relationship data model allows us to describe the data involved in a real-world system in terms of objects and their relationships
- ♣ It is widely used in database design

• What are the steps in designing a database?

Overview

- ❖ What is the entity-relationship (ER) model?
- ♣ How does UML related to the ER model?

Chapter 2 of textbook

Database Design

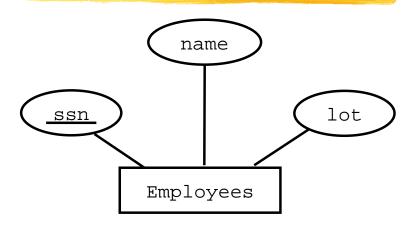
Database design can be divided in six major steps:

- Requirements analysis
- Conceptual Database design (mostly done using the ER model)
- Logical Database design
- Schema refinement
- Physical Database Design
- Application and Security Design

ER diagram

ER Diagram:

- an approximate description of the data,
- constructed through a subjective evaluation of the information,
- that was collected through the requirements analysis phase.


2-5 Introduction to Database Design (1.1.1)

CSC 370 dmgerman@uvic.ca

2–6 Introduction to Database Design (1.1.1)

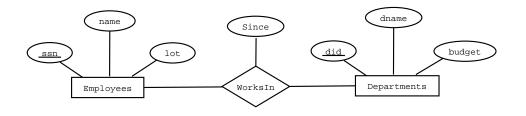
CSC 370 dmgerman@uvic.ca

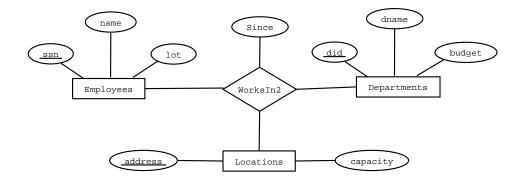
Example of an Entity

Entities

- **Entity**: is an object in the real world that is distinguishable from other objects
- **Entity Set**: collection of similar objects
- ♣ An entity is described using a set of attributes
- **+** Each attribute has a **domain** of possible values.
- ❖ For each entity set, we should select a **key**
- ❖ A key is a minimal set of attributes that uniquely identify an entity in a set

Relationships

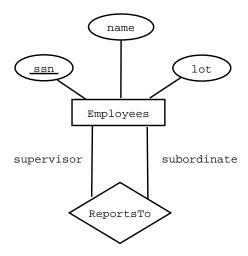

- **♣** A **relationship** is an association among two or more entities
- ♣ A set of similar relationships is called a **relationship set**:


$$\{(e_1, ..., e_n) | e_1 \in E_1, ..., e_n \in E_n\}$$

- \clubsuit Each n-tuple denotes a relationship involving n entities $(e_1,...,e_n)$ where e_i is in the entity set E_i
- A relationship can also include its own attributes (called descriptive attributes
- ♣ A relationship must be uniquely identified by its participating entities

Example of a Relationship

Example of a Ternary Relationship

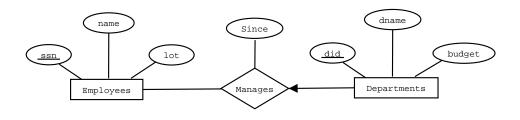

2-9 Introduction to Database Design (1.1.1)

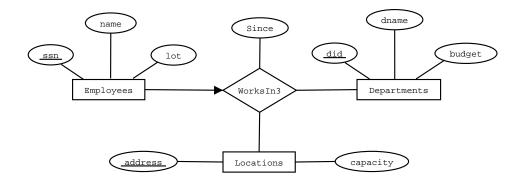
CSC 370 dmgerman@uvic.ca

2-10 Introduction to Database Design (1.1.1)

CSC 370 dmgerman@uvic.ca

Role Indicators




Key Constraints

- One-to-many: an entity is related to many other entities, but each of these entities can only be related to one entity
- Many-to-many: an entity is related to many other entities, and vice-versa

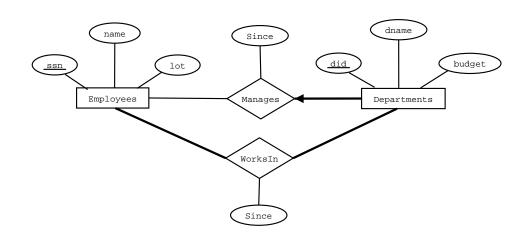
Key Constraint on Manages

Key Constraint on a Ternary Rel.

2–13 Introduction to Database Design (1.1.1)

CSC 370 dmgerman@uvic.ca

2–14 Introduction to Database Design (1.1.1)


CSC 370 dmgerman@uvic.ca

Participation Constraints

There are two types of participation constraints for an entity in a relationship:

- ♣ Total: Every instance of the entity is present in the relationship (represent it by a thick line)
- Partial: Not every instance of the entity is present in the relationship represented

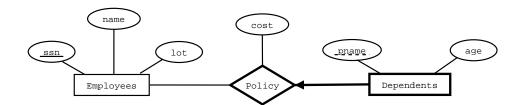
Total participation

Weak Entities

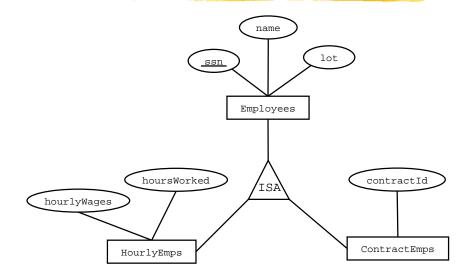
- Sometimes the attributes associated with an entity set do not include a key
- ♣ A weak entity can be identified uniquely only by considering some of its attributes in conjunction with the primary key of another entity (called identifying owner entity)
- The following restrictions must hold:
 - ♦ The owner entity set is a one-to-many to the weak entity (identifying relationship set)
 - ♦ The weak entity set should have total participation in the identifying relationship set.
- Represented by drawing the relation and the weak entity in thick lines

2–17 Introduction to Database Design (1.1.1)

CSC 370 dmgerman@uvic.ca


2–18 Introduction to Database Design (1.1.1)

CSC 370 dmgerman@uvic.ca


Class Hierarchies

- ❖ Sometimes we need to define entities as "derivations" of others(ISA)
- ♣ That is, the attributes of an entity are those of another entity (its parent) plus other ones
- A class hierarchy can be seen in two different ways:
 - ◆ Specialization: identify subsets of an entity that share some distinguishing characteristics
 - ♦ Generalization: An entity is created that includes several characteristics common to different entity sets.

A Weak Entity Set

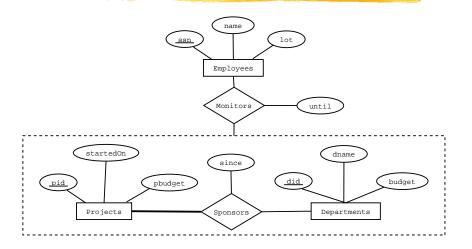
A Class Hierarchy

Class hierarchies...

- ♣ Why do we subclass?
 - ♦ We might want to include attributes that only make sense for the subclass (specialization)
 - ♦ We might want to identify a set of entities that participate in a given relation (generalization)

Aggregation

- Sometimes a relationship needs to relate one relationship with a collection of entities or other relationships
- Aggregation allows us to indicate that a relationship set participates in another relationship set.
- Illustrated by drawing a dashed box around the set of related entities and relationships.


2–21 Introduction to Database Design (1.1.1)

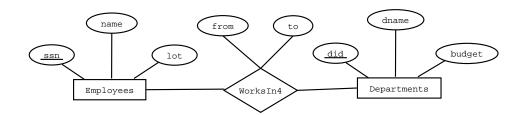
CSC 370 dmgerman@uvic.ca

2–22 Introduction to Database Design (1.1.1)

CSC 370 dmgerman@uvic.ca

Aggregation...

Conceptual Design with the ER Model

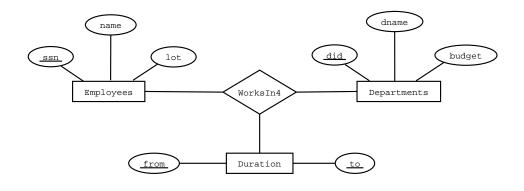

Developing an ER diagram presents several choices:

- Should a concept be modelled as an entity or an attribute?
- Should a concept be modelled as an entity or a relationship?
- What are the relationship sets and their participating entity sets?
- Should we use binary or ternary relationships?
- Should we use aggregation?

Entity vs. Attribute

- ♣ It is not always clear what should be an attribute of an entity and what should be moved to a new entity set
- In general, an attribute should not be an entity unless:
 - ♦ We need to record the same attribute(s) for more than one entity
 - ♦ We want to capture the structure of this "attribute" in our ER-diagram

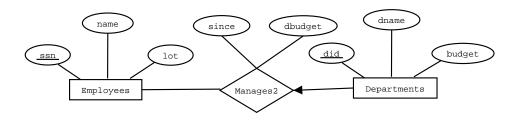
Entity vs. Attribute...


2–25 Introduction to Database Design (1.1.1)

CSC 370 dmgerman@uvic.ca

2–26 Introduction to Database Design (1.1.1)

CSC 370 dmgerman@uvic.ca


Entity vs. Attribute...

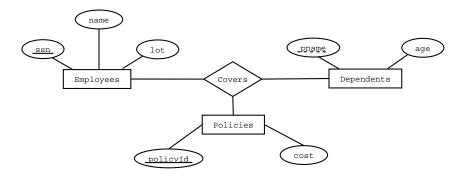
Entity vs. Relationship

- The imprecise nature of ER modelling makes it difficult to recognize when to define an attribute as part of an entity or as part of a relationship
- ♣ The only solution (at this point) is to apply common sense: is the attribute part of the relation, or is it part of the entity?
- ❖ In general, a mistake in this stage will lead to wasted storage
- We will fix this in the future (normalization)

Entity vs. Relationship...

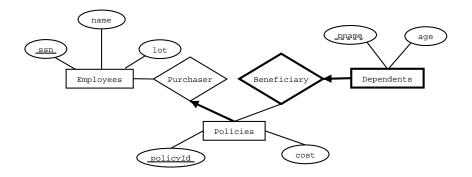
Binary vs. Ternary Relationships

- ♣ In cases where we can use either a binary or ternary relationship,
- the decision is usually determined by any restrictions (integrity constraints) on the relationship that we are trying to model and
- if we can or cannot do it with a ternary relationship


2–29 Introduction to Database Design (1.1.1)

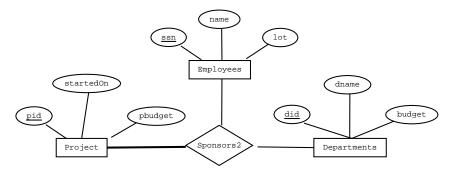
CSC 370 dmgerman@uvic.ca

2–30 Introduction to Database Design (1.1.1)


CSC 370 dmgerman@uvic.ca

Binary vs. Ternary...

- A policy cannot be owned jointly by two or more employees
- Every policy must be owned by some employee
- Dependents is a weak entity (uniquely identified by *policyid* and *pname*)


Binary vs. Ternary...

Aggregation vs. Ternary Relationships

• Again, the choice depends on integrity constraints

Aggregation vs. Ternary...

2–33 Introduction to Database Design (1.1.1)

CSC 370 dmgerman@uvic.ca

2–34 Introduction to Database Design (1.1.1)

CSC 370 dmgerman@uvic.ca