
Overview of Transaction Management 221

1. The following schedule results in a write-read conflict:
T2:R(X), T2:R(Y), T2:W(X), T1:R(X) ...
T1:R(X) is a dirty read here.

2. The following schedule results in a read-write conflict:
T2:R(X), T2:R(Y), T1:R(X), T1:R(Y), T1:W(X) ...
Now, T2 will get an unrepeatable read on X.

3. The following schedule results in a write-write conflict:
T2:R(X), T2:R(Y), T1:R(X), T1:R(Y), T1:W(X), T2:W(X) ...
Now, T2 has overwritten uncommitted data.

4. Strict 2PL resolves these conflicts as follows:

(a) In S2PL, T1 could not get a shared lock on X because T2 would be holding
an exclusive lock on X. Thus, T1 would have to wait until T2 was finished.

(b) Here T1 could not get an exclusive lock on X because T2 would already be
holding a shared or exclusive lock on X.

(c) Same as above.

Exercise 16.4 We call a transaction that only reads database object a read-only
transaction, otherwise the transaction is called a read-write transaction. Give brief
answers to the following questions:

1. What is lock thrashing and when does it occur?

2. What happens to the database system throughput if the number of read-write
transactions is increased?

3. What happens to the database system throughput if the number of read-only
transactions is increased?

4. Describe three ways of tuning your system to increase transaction throughput.

Answer 16.4 The answer to each question is given below.

1. Locking thrashing occurs when the database system reaches to a point where
adding another new active transaction actually reduces throughput due to com-
petition for locking among all active transactions. Empirically, locking thrashing
is seen to occur when 30% of active transactions are blocked.

2. If the number of read-write transaction is increased, the database system through-
put will increase until it reaches the thrashing point; then it will decrease since
read-write transactions require exclusive locks, thus resulting in less concurrent
execution.

222 Chapter 16

3. If the number of read-only transaction is increased, the database system through-
put will also increase since read-only transactions require only shared locks. So
we are able to have more concurrency and execute more transactions in a given
time.

4. Throughput can be increased in three ways:

(a) By locking the smallest sized objects possible.

(b) By reducing the time that transaction hold locks.

(c) By reducing hot spots, a database object that is frequently accessed and
modified.

Exercise 16.5 Suppose that a DBMS recognizes increment, which increments an in-
teger-valued object by 1, and decrement as actions, in addition to reads and writes.
A transaction that increments an object need not know the value of the object; incre-
ment and decrement are versions of blind writes. In addition to shared and exclusive
locks, two special locks are supported: An object must be locked in I mode before
incrementing it and locked in D mode before decrementing it. An I lock is compatible
with another I or D lock on the same object, but not with S and X locks.

1. Illustrate how the use of I and D locks can increase concurrency. (Show a schedule
allowed by Strict 2PL that only uses S and X locks. Explain how the use of I

and D locks can allow more actions to be interleaved, while continuing to follow
Strict 2PL.)

2. Informally explain how Strict 2PL guarantees serializability even in the presence
of I and D locks. (Identify which pairs of actions conflict, in the sense that their
relative order can affect the result, and show that the use of S, X , I, and D locks
according to Strict 2PL orders all conflicting pairs of actions to be the same as
the order in some serial schedule.)

Answer 16.5 The answer to each question is given below.

1. Take the following two transactions as example:

T1: Increment A, Decrement B, Read C;
T2: Increment B, Decrement A, Read C

If using only strict 2PL, all actions are versions of blind writes, they have to obtain
exclusive locks on objects. Following strict 2PL, T1 gets an exclusive lock on A,
if T2 now gets an exclusive lock on B, there will be a deadlock. Even if T1 is fast
enough to have grabbed an exclusive lock on B first, T2 will now be blocked until
T1 finishes. This has little concurrency. If I and D locks are used, since I and

Overview of Transaction Management 225

2. Change enrollment for a student identified by her snum from one class to another
class.

3. Assign a new faculty member identified by his fid to the class with the least number
of students.

4. For each class, show the number of students enrolled in the class.
Answer 16.7 The answer to each question is given below.

1. Because we are inserting a new row in the table Enrolled, we do not need any
lock on the existing rows. So we would use READ UNCOMMITTED.

2. Because we are updating one existing row in the table Enrolled, we need an
exclusive lock on the row which we are updating. So we would use READ COM-
MITTED.

3. To prevent other transactions from inserting or updating the table Enrolled while
we are reading from it (known as the phantom problem), we would need to use
SERIALIZABLE.

4. same as above.

Exercise 16.8 Consider the following schema:

Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers.

For each of the following transactions, state the SQL isolation level that you would use
and explain why you chose it.

1. A transaction that adds a new part to a supplier’s catalog.

2. A transaction that increases the price that a supplier charges for a part.

3. A transaction that determines the total number of items for a given supplier.

4. A transaction that shows, for each part, the supplier that supplies the part at the
lowest price.

Answer 16.8 The answer to each question is given below.

1. Because we are inserting a new row in the table Catalog, we do not need any lock
on the existing rows. So we would use READ UNCOMMITTED.

226 Chapter 16

2. Because we are updating one existing row in the table Catalog, we need an exclu-
sive lock on the row which we are updating. So we would use READ COMMIT-
TED.

3. To prevent other transactions from inserting or updating the table Catalog while
we are reading from it (known as the phantom problem), we would need to use
SERIALIZABLE.

4. same as above.

Exercise 16.9 Consider a database with the following schema:

Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

The Catalog relation lists the prices charged for parts by Suppliers.

Consider the transactions T 1 and T 2. T 1 always has SQL isolation level SERIALIZABLE.
We first run T 1 concurrently with T 2 and then we run T 1 concurrently with T 2 but we
change the isolation level of T 2 as specified below. Give a database instance and SQL
statements for T 1 and T 2 such that result of running T 2 with the first SQL isolation
level is different from running T 2 with the second SQL isolation level. Also specify the
common schedule of T 1 and T 2 and explain why the results are different.

1. SERIALIZABLE versus REPEATABLE READ.

2. REPEATABLE READ versus READ COMMITTED.

3. READ COMMITTED versus READ UNCOMMITTED.

Answer 16.9 The answer to each question is given below.

1. Suppose a database instance of table Catalog and SQL statements shown below:

sid pid cost
18 45 $7.05
22 98 $89.35
31 52 $357.65
31 53 $26.22
58 15 $37.50
58 94 $26.22

Schema Refinement and Normal Forms 259

3. Consider the set of FD: AB → CD and B → C. AB is obviously a key for this
relation since AB → CD implies AB → ABCD. It is a primary key since there are
no smaller subsets of keys that hold over R(A,B,C,D). The FD: B → C violates
2NF since:

C ∈ B is false; that is, it is not a trivial FD

B is not a superkey

C is not part of some key for R

B is a proper subset of the key AB (transitive dependency)

4. Consider the set of FD: AB → CD and C → D. AB is obviously a key for this
relation since AB → CD implies AB → ABCD. It is a primary key since there are
no smaller subsets of keys that hold over R(A,B,C,D). The FD: C → D violates
3NF but not 2NF since:

D ∈ C is false; that is, it is not a trivial FD

C is not a superkey

D is not part of some key for R

5. The only way R could be in BCNF is if B includes a key, i.e. B is a key for R.

6. It means that the relationship is one to one. That is, each A entity corresponds
to at most one B entity and vice-versa. (In addition, we have the dependency AB
→ C, from the semantics of a relationship set.)

Exercise 19.2 Consider a relation R with five attributes ABCDE. You are given the
following dependencies: A → B, BC → E, and ED → A.

1. List all keys for R.

2. Is R in 3NF?

3. Is R in BCNF?

Answer 19.2

1. CDE, ACD, BCD

2. R is in 3NF because B, E and A are all parts of keys.

3. R is not in BCNF because none of A, BC and ED contain a key.

Exercise 19.3 Consider the relation shown in Figure 19.1.

1. List all the functional dependencies that this relation instance satisfies.

260 Chapter 19

X Y Z
x1 y1 z1

x1 y1 z2

x2 y1 z1

x2 y1 z3

Figure 19.1 Relation for Exercise 19.3.

2. Assume that the value of attribute Z of the last record in the relation is changed
from z3 to z2. Now list all the functional dependencies that this relation instance
satisfies.

Answer 19.3

1. The following functional dependencies hold over R: Z → Y, X → Y, and XZ → Y

2. Same as part 1. Functional dependency set is unchanged.

Exercise 19.4 Assume that you are given a relation with attributes ABCD.

1. Assume that no record has NULL values. Write an SQL query that checks whether
the functional dependency A → B holds.

2. Assume again that no record has NULL values. Write an SQL assertion that
enforces the functional dependency A → B.

3. Let us now assume that records could have NULL values. Repeat the previous
two questions under this assumption.

Answer 19.4 Assuming...

1. The following statement returns 0 iff no statement violates the FD A → B.

SELECT COUNT (*)
FROM R AS R1, R AS R2
WHERE (R1.B != R2.B) AND (R1.A = R2.A)

2. CREATE ASSERTION ADeterminesB
CHECK ((SELECT COUNT (*)

FROM R AS R1, R AS R2
WHERE (R1.B != R2.B) AND (R1.A = R2.A))
=0)

Schema Refinement and Normal Forms 261

3. Note that the following queries can be written with the NULL and NOT NULL
interchanged. Since we are doing a full join of a table and itself, we are creating
tuples in sets of two therefore the order is not important.

SELECT COUNT (*)
FROM R AS R1, R AS R2
WHERE ((R1.B != R2.B) AND (R1.A = R2.A))

OR ((R1.B is NULL) AND (R2.B is NOT NULL)
AND (R1.A = R2.A))

CREATE ASSERTION ADeterminesBNull
CHECK ((SELECT COUNT (*)

FROM R AS R1, R AS R2
WHERE ((R1.B != R2.B) AND (R1.A = R2.A)))

OR ((R1.B is NULL) AND (R2.B is NOT NULL)
AND (R1.A = R2.A))

=0)

Exercise 19.5 Consider the following collection of relations and dependencies. As-
sume that each relation is obtained through decomposition from a relation with at-
tributes ABCDEFGHI and that all the known dependencies over relation ABCDEFGHI
are listed for each question. (The questions are independent of each other, obviously,
since the given dependencies over ABCDEFGHI are different.) For each (sub)relation:
(a) State the strongest normal form that the relation is in. (b) If it is not in BCNF,
decompose it into a collection of BCNF relations.

1. R1(A,C,B,D,E), A → B, C → D

2. R2(A,B,F), AC → E, B → F

3. R3(A,D), D → G, G → H

4. R4(D,C,H,G), A → I, I → A

5. R5(A,I,C,E)

Answer 19.5

1. 1NF. BCNF decomposition: AB, CD, ACE.

2. 1NF. BCNF decomposition: AB, BF

3. BCNF.

4. BCNF.

5. BCNF.

262 Chapter 19

Exercise 19.6 Suppose that we have the following three tuples in a legal instance of
a relation schema S with three attributes ABC (listed in order): (1,2,3), (4,2,3), and
(5,3,3).

1. Which of the following dependencies can you infer does not hold over schema S?

(a) A → B, (b) BC → A, (c) B → C

2. Can you identify any dependencies that hold over S?

Answer 19.6

1. BC→ A does not hold over S (look at the tuples (1,2,3) and (4,2,3)). The other
tuples hold over S.

2. No. Given just an instance of S, we can say that certain dependencies (e.g., A →
B and B → C) are not violated by this instance, but we cannot say that these
dependencies hold with respect to S. To say that an FD holds w.r.t. a relation is
to make a statement about all allowable instances of that relation!

Exercise 19.7 Suppose you are given a relation R with four attributes ABCD. For
each of the following sets of FDs, assuming those are the only dependencies that hold
for R, do the following: (a) Identify the candidate key(s) for R. (b) Identify the best
normal form that R satisfies (1NF, 2NF, 3NF, or BCNF). (c) If R is not in BCNF,
decompose it into a set of BCNF relations that preserve the dependencies.

1. C → D, C → A, B → C

2. B → C, D → A

3. ABC → D, D → A

4. A → B, BC → D, A → C

5. AB → C, AB → D, C → A, D → B

Answer 19.7

1. (a) Candidate keys: B

(b) R is in 2NF but not 3NF.

(c) C → D and C → A both cause violations of BCNF. One way to obtain a
(lossless) join preserving decomposition is to decompose R into AC, BC, and
CD.

2. (a) Candidate keys: BD

(b) R is in 1NF but not 2NF.

Schema Refinement and Normal Forms 263

(c) Both B → C and D → A cause BCNF violations. The decomposition: AD,
BC, BD (obtained by first decomposing to AD, BCD) is BCNF and lossless
and join-preserving.

3. (a) Candidate keys: ABC, BCD

(b) R is in 3NF but not BCNF.

(c) ABCD is not in BCNF since D → A and D is not a key. However if we split
up R as AD, BCD we cannot preserve the dependency ABC → D. So there
is no BCNF decomposition.

4. (a) Candidate keys: A

(b) R is in 2NF but not 3NF (because of the FD: BC → D).

(c) BC → D violates BCNF since BC does not contain a key. So we split up R
as in: BCD, ABC.

5. (a) Candidate keys: AB, BC, CD, AD

(b) R is in 3NF but not BCNF (because of the FD: C → A).

(c) C → A and D → B both cause violations. So decompose into: AC, BCD
but this does not preserve AB → C and AB → D, and BCD is still not
BCNF because D → B. So we need to decompose further into: AC, BD,
CD. However, when we attempt to revive the lost functioanl dependencies
by adding ABC and ABD, we that these relations are not in BCNF form.
Therefore, there is no BCNF decomposition.

Exercise 19.8 Consider the attribute set R = ABCDEGH and the FD set F = {AB →
C, AC → B, AD → E, B → D, BC → A, E → G}.

1. For each of the following attribute sets, do the following: (i) Compute the set of
dependencies that hold over the set and write down a minimal cover. (ii) Name
the strongest normal form that is not violated by the relation containing these
attributes. (iii) Decompose it into a collection of BCNF relations if it is not in
BCNF.

(a) ABC, (b) ABCD, (c) ABCEG, (d) DCEGH, (e) ACEH

2. Which of the following decompositions of R = ABCDEG, with the same set of
dependencies F , is (a) dependency-preserving? (b) lossless-join?

(a) {AB, BC, ABDE, EG }
(b) {ABC, ACDE, ADG }

Answer 19.8

1. (a) i. R1 = ABC: The FD’s are AB → C, AC → B, BC → A.

264 Chapter 19

ii. This is already a minimal cover.
iii. This is in BCNF since AB, AC and BC are candidate keys for R1. (In

fact, these are all the candidate keys for R1).

(b) i. R2 = ABCD: The FD’s are AB → C, AC → B, B → D, BC → A.
ii. This is a minimal cover already.
iii. The keys are: AB, AC, BC. R2 is not in BCNF or even 2NF because of

the FD, B → D (B is a proper subset of a key!) However, it is in 1NF.
Decompose as in: ABC, BD. This is a BCNF decomposition.

(c) i. R3 = ABCEG; The FDs are AB → C, AC → B, BC → A, E → G.
ii. This is in minimal cover already.
iii. The keys are: ABE, ACE, BCE. It is not even in 2NF since E is a proper

subset of the keys and there is a FD E → G. It is in 1NF . Decompose
as in: ABE, ABC, EG. This is a BCNF decompostion.

(d) i. R4 = DCEGH; The FD is E → G.
ii. This is in minimal cover already.
iii. The key is DCEH ; It is not in BCNF since in the FD E → G, E is a

subset of the key and is not in 2NF either. It is in 1 NF Decompose as
in: DCEH, EG

(e) i. R5 = ACEH; No FDs exist.
ii. This is a minimal cover.
iii. Key is ACEH itself.
iv. It is in BCNF form.

2. (a) The decomposition. { AB, BC, ABDE, EG } is not lossless. To prove this
consider the following instance of R:

{(a1, b, c1, d1, e1, g1), (a2, b, c2, d2, e2, g2)}
Because of the functional dependencies BC → A and AB → C, a1 �= a2 if
and only if c1 �= c2. It is easy to that the join AB �� BC contains 4 tuples:

{(a1, b, c1), (a1, b, c2), (a2, b, c1), (a2, b, c2)}
So the join of AB, BC, ABDE and EG will contain at least 4 tuples, (actually
it contains 8 tuples) so we have a lossy decomposition here.

This decomposition does not preserve the FD, AB → C (or AC → B)

(b) The decomposition {ABC, ACDE, ADG } is lossless. Intuitively, this is
because the join of ABC, ACDE and ADG can be constructed in two steps;
first construct the join of ABC and ACDE: this is lossless because their
(attribute) intersection is AC which is a key for ABCDE (in fact ABCDEG)
so this is lossless. Now join this intermediate join with ADG. This is also
lossless because the attribute intersection is is AD and AD → ADG. So by
the test mentioned in the text this step is also a lossless decomposition.

Schema Refinement and Normal Forms 265

The projection of the FD’s of R onto ABC gives us: AB → C, AC → B

and BC → A. The projection of the FD’s of R onto ACDE gives us: AD

→ E and The projection of the FD’s of R onto ADG gives us: AD → G

(by transitivity) The closure of this set of dependencies does not contain E

→ G nor does it contain B → D. So this decomposition is not dependency
preserving.

Exercise 19.9 Let R be decomposed into R1, R2, . . ., Rn. Let F be a set of FDs on
R.

1. Define what it means for F to be preserved in the set of decomposed relations.

2. Describe a polynomial-time algorithm to test dependency-preservation.

3. Projecting the FDs stated over a set of attributes X onto a subset of attributes
Y requires that we consider the closure of the FDs. Give an example where
considering the closure is important in testing dependency-preservation, that is,
considering just the given FDs gives incorrect results.

Answer 19.9

1. Let Fi denote the projection of F on Ri. F is preserved if the closure of the (union
of) the Fi’s equals F (note that F is always a superset of this closure.)

2. We shall describe an algorithm for testing dependency preservation which is poly-
nomial in the cardinality of F. For each dependency X → Y ∈ F check if it is in F
as follows: start with the set S (of attributes in) X. For each relation Ri, compute
the closure of S ∩Ri relative to F and project this closure to the attributes of Ri.
If this results in additional attributes, add them to S. Do this repeatedly until
there is no change to S.

3. There is an example in the text in Section 19.5.2.

Exercise 19.10 Suppose you are given a relation R(A,B,C,D). For each of the fol-
lowing sets of FDs, assuming they are the only dependencies that hold for R, do the
following: (a) Identify the candidate key(s) for R. (b) State whether or not the pro-
posed decomposition of R into smaller relations is a good decomposition and briefly
explain why or why not.

1. B → C, D → A; decompose into BC and AD.

2. AB → C, C → A, C → D; decompose into ACD and BC.

3. A → BC, C → AD; decompose into ABC and AD.

4. A → B, B → C, C → D; decompose into AB and ACD.

266 Chapter 19

5. A → B, B → C, C → D; decompose into AB, AD and CD.

Answer 19.10

1. Candidate key(s): BD. The decomposition into BC and AD is unsatisfactory
because it is lossy (the join of BC and AD is the cartesian product which could
be much bigger than ABCD)

2. Candidate key(s): AB, BC. The decomposition into ACD and BC is lossless since
ACD ∩ BC (which is C) → ACD. The projection of the FD’s on ACD include C
→ D, C → A (so C is a key for ACD) and the projection of FD on BC produces
no nontrivial dependencies. In particular this is a BCNF decomposition (check
that R is not!). However, it is not dependency preserving since the dependency
AB → C is not preserved. So to enforce preservation of this dependency (if we
do not want to use a join) we need to add ABC which introduces redundancy. So
implicitly there is some redundancy across relations (although none inside ACD
and BC).

3. Candidate key(s): A, C. Since A and C are both candidate keys for R, it is already
in BCNF. So from a normalization standpoint it makes no sense to decompose R.
Further more, the decompose is not dependency-preserving since C → AD can no
longer be enforced.

4. Candidate key(s): A. The projection of the dependencies on AB are: A → B and
those on ACD are: A → C and C → D (rest follow from these). The scheme ACD
is not even in 3NF, since C is not a superkey, and D is not part of a key. This is
a lossless-join decomposition (since A is a key), but not dependency preserving,
since B → C is not preserved.

5. Candidate key(s): A (just as before) This is a lossless BCNF decomposition (easy
to check!) This is, however, not dependency preserving (B consider → C). So
it is not free of (implied) redundancy. This is not the best decomposition (the
decomposition AB, BC, CD is better.)

Exercise 19.11 Consider a relation R that has three attributes ABC. It is decom-
posed into relations R1 with attributes AB and R2 with attributes BC.

1. State the definition of a lossless-join decomposition with respect to this example.
Answer this question concisely by writing a relational algebra equation involving
R, R1, and R2.

2. Suppose that B → C. Is the decomposition of R into R1 and R2 lossless-join?
Reconcile your answer with the observation that neither of the FDs R1 ∩ R2 →
R1 nor R1 ∩ R2 → R2 hold, in light of the simple test offering a necessary and
sufficient condition for lossless-join decomposition into two relations in Section
15.6.1.

