
The Future of Continuous Integration in GNOME
Colin Walters

Red Hat, MA, USA
GNOME Project

walters@verbum.org

Germán Poo-Caamaño
University of Victoria, Canada

GNOME Project
gpoo@gnome.org

Daniel M. German
University of Victoria, Canada

dmg@uvic.ca

Abstract—In Free and Open Source Software (FOSS) projects
based on Linux systems, the users usually install the software
from distributions. The distributions act as intermediaries be-
tween software developers and users. Distributors collect the
source code of the different projects and package them, ready
to be installed by the users. Packages seems to work well for
managing and distributing stable major and minor releases. It
presents, however, various release management challenges for
developers of projects with multiples dependencies not always
available in the stable version of their systems. In projects like
GNOME, composed of dozens of individual components, devel-
opers must build newer versions of the libraries and applications
that their applications depend upon before working in their own
projects. This process can be cumbersome for developers who are
not programmers, such as user interaction designers or technical
writers. In this paper we describe some of the problems that the
current distribution model presents to do continuous integration,
testing and deployment for developers in GNOME, and present
ongoing work intended to address these problems that uses a git-
like approach to the building and deployment of applications.

Index Terms—Release Engineering, Continuous Integration,
Free/Open Source Software, GNOME

I. INTRODUCTION

GNOME1 is a project whose mission is to build a free
desktop. It is composed of several components or modules
interrelated that are developed by different groups of people,
both volunteers and paid developers. One of the challenges of
building a desktop is to integrate and test the whole system,
especially the fundamental pieces necessary to support it.
To improve the user experience it is sometimes necessary
to make changes at different levels of the application stack.
Some parts of the stack are internal (such as libraries, window
manager, user applications, etc.) and some others are external
(for instance, 3D acceleration in drivers, 3D rendering by
software, hardware presentation to user space, underlying in-
tercommunication process, etc.). Changes that involve different
levels of this stack require careful testing before releasing
them to the end-users. This process can be cumbersome for
new contributors, who need to deal with building the system
before they can start contributing to a module of the project.
In addition, contributors can be testers, documenters, user
interaction designers or programmers; therefore, they might
not have the skills to build software. While contributors
need the latest version of libraries or applications for their
development, they also need a stable system to perform other
work.

1http://gnome.org

In [1], Michlmayr et al. revealed three different types of
release management that occur in FOSS projects: development
releases, major end-user stable releases, and minor releases
(that update existing end-user releases). The major focus of
release management in FOSS

has been in the last two, that in Linux systems is mainly
done by distributors, leaving the first one up to the developers,
who are considered experts.

Distributions, such as Ubuntu and SUSE, use packages to
deliver software to their users. Unfortunately, the package
model has restrictions for development. Packages are not
created by distributions at the same pace as a software is
being developed. This means that contributors cannot rely on
their distributions to update the packages they are testing. They
need to build the newer releases of packages that their system
requires in order to have a system where they can develop and
run the system being developed.

Even if packages could be created at the same pace of
the software development, they have dependencies that might
need to be updated and tested. Because it is software under
development, eventually they could break a system and leave it
unusable. Using the current packaging systems of distributions,
it is not easy to roll back to a previous state. This situation is
risky for contributors who only have one computer that they
need to use for development and other work and cannot afford
to have an unstable environment.

Another problem with the package model used by Linux
distributions is the lack of a clear separation between the
basic system and the applications. Every piece of software is a
package (kernel, libraries, frameworks, end-user applications).
Upgrading a package for testing might trigger a chain of
undesirable upgrades, even if they are not strictly necessary.
For example, a package that is being tested might declare that
it requires a new version of another one (even if the older
one is sufficient) and might trigger an upgrade to an unstable
package, even though it is not needed. In Debian is possible
to tag a package as essential to indicate that a package must
be available to have an usable system [2], but there is no
safe mechanism to “pin” a version so it is never upgraded (or
downgraded). Hence a new version of the package might leave
the system in an unusable state.

In this paper we address the consequences of the package
model in the context of release management on projects like
GNOME and we present OSTree, a continuous integration

978-1-4673-6441-6/13 c© 2013 IEEE RELENG 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

33



system for GNOME that addresses these problems. We are
interested in the following questions:

• How can be reduced the gap between the introduction
and detection of regressions?

• How can the release management process be improved to
allow any contributor to try the latest versions available
without breaking their system, and allow her to easily
switching between a testing and a development environ-
ment?

In section II, we describe two of the existing problems with
the package model of distributing software in FOSS projects.
In section III, we introduce the proposed solution that builds a
system, keeps track of the binaries built after each commit and
deploys systems for testing on a daily basis. In section IV, we
enumerate the technical and political limitations of the OSTree
approach. Section V provides an overview of the related work.
The final section discusses future work and conclusions.

II. BACKGROUND

The package model presents some problems for developers
of an environment like GNOME, although it works well for
distributors. GNOME follows a release schedule of 6 months
for major releases. This allows distributors to pick a stable
version of GNOME in a predictable timetable in order to
integrate it into their systems, which are targeted to end-
users. For projects like GNOME, the following problems
arise as the projects get more complex: the gap between the
introduction and detection of regressions grows, and using
packages for testing a project becomes challenging. Each
problem is described further below.

A. Gap Between Introduction and Detection of Regressions

Figure 1 illustrates a simplified timeline of a regression from
its introduction to the moment that it is detected, after it has
reached distribution’s end-users. The developer perceives the
system as changes in the version control repository. The pack-
agers see the changes in the system as releases (“tarballs”2).
The users see it as a new package that they install. It is then,
when a user might notice a regression and report it back to
the developers. This might happen weeks or months after the
introduction of the regression.

In Figure 1, users include end-users as well as external de-
velopers that use the software. There might be some GNOME
developers in that group, too. For instance, volunteers who
maintain their projects with older versions of the libraries, so
that they avoid to build a newer version of the stack because
it could be time consuming.

Regression testing might not catch every potential situation
and many defects might only manifest in real settings.

Most users of GNOME install it using the packages pro-
vided by their distributors. Therefore, one of the challenges to
detect and fix regressions faster is to reduce the time between

2A tarball refers to a tar file, which is a collection of files and directories
packed together preserving permissions and ownership of the files. This is the
common way that FOSS projects release their software.

Figure 1. Time Between Introduction of a Regression and Its Detection

bug-introducing changes and the creation and distribution of
packages.

A solution to this problem is to ask users to download,
build and install the system from tarballs, bypassing the
distributions. However, this is not a practical solution. For
many contributors building everything they need (including
the different components of GNOME and any necessary
dependencies) might be beyond their skills, and perhaps more
critical, building the entire stack creates multiple potential
points of failure. If one of the libraries does not install, or
it is faulty, then the entire system might stop working. This is
an undesirable outcome as it is explained in the next section.

B. Rolling Back to a Previous Working Version

Allowing multiple versions of a program, and to switch
back and forth between them, would help developers to test
continuously the latest development version of a program and
still have an usable working environment. In GNOME, as in
many FOSS projects, the developers are distributed in different
locations. Most of them only have one computer that they use
to contribute to the project and do any other, non-related work.
Allowing users to install and switch between different versions
of packages would be a way to reduce the risk of testing.
Contributor might install the latest development packages they
need; if a critical error is found, then they could easily switch
back to the stable versions, without compromising the stability
of their systems.

Packaging systems used by distributions like rpm, dpkg
and portage can only install one version of a package at a
time. The upgrade of a package is done by overwriting the old
version with the newer one, and when there are dependencies
among packages, they might have to be upgraded too. This
process is not atomic: during the upgrade, some files belonging
to the old version might conflict with the new one, leaving
the system in an inconsistent state [3]. In addition, packaging
systems rely on the version numbers assigned to packages,
whose numbers must strictly increase over time (larger num-
bers imply newer releases). For official stable releases this
system has proven to work well, mainly because packages,
and their interactions, are well tested before they are deployed
to users.

Unfortunately, this process was not created for the distribu-
tion of packages that are expected to be tested by users. If one
of the packages breaks the system, it might not be trivial to

34



Figure 2. A Continuous Integration System for GNOME

rollback installations to return the system to a stable, reliable
state.

III. OSTREE AS A CONTINUOUS INTEGRATION SYSTEM

OSTree3 is a tool for developing, building, and deploying
Linux-based systems that aims to a release model as shown
in figure 2. It sets aside the concept of package previously
discussed. After a commit in a component being developed, the
application and its dependencies are built and deployed in the
entire project’s deployment repository. From there, developers
and experienced users can update theirs systems to run and
test the current state of the whole project.

OSTree is separated into 3 conceptually independent parts:
1) Version control system designed for binaries;
2) Build system for applications; and
3) Deployment system for developing and building Linux-

based operating systems.
OSTree relies on an external tool (Yocto [4]) to build the

core that conforms the operating system. Basic programs and
libraries are added to provide the minimal system necessary to
build the application sets. This approach attempts to separate
different type of software (core system and applications) in
contrast to the package model found in Linux-based systems.

A. Version Control System for Binaries

OSTree replaces the package–centric installation model
with a git-like version controlled repository of the entire
filesystem tree, which can be cloned and updated on the
client machine. A repository stores multiple and complete file
system trees already built. As a consequence, the operations
of installing and upgrading the system are equivalent to
version control operations: installation is done by “cloning”
the repository, and updates by “pulling” new changes from
it. In addition, OSTree can retain multiple named versions
of the tree and easily switch between any of them. That
allows developers to maintain experimental builds, rollback
to earlier versions to reproduce bugs, and ensure that the
entire development team can experience the identical set of
components.

3http://git.gnome.org/browse/ostree

The core of OSTree architecture is inspired by git [5].
As in git, OSTree has pack files, tree and commit objects.
The underlying principle of OSTree is that the operating
system (with basic programs and libraries) is read–only, that
makes it possible parallel operating systems to be installed
in a directory, sharing space by not copying the files that
are identical among versions. Therefore, it is possible to be
running GNOME from Debian stable and then download the
latest version of GNOME running on latest Ubuntu into a
folder and try it. Thus, the primary architectural difference
from git is the focus on read–only checkouts.

Unlike virtualization, there is no extra consumption of
resources and the user has access to all of her data as before
(email, documents, etc.).

Finally, to avoid potential sources of conflict, each system
counts with its own directory to write system data (logs,
cache, locks, queues, etc.) during its operation. Therefore,
these directories are not stored in the repository.

B. Build System Tool — ostbuild

ostbuild is a build tool that monitors the version control
repositories of the software. Whenever it detects a change
(commit), it builds a binary. This binary is tagged with the
commit, and is stored in the OSTree repository. It only rebuilds
changed components. OSTree makes possible for developers
to track down exactly which commit caused a regression. The
repositories to monitor are defined in a file that contains the
definitions and options to build every application.

OSTree makes reverting regressions simple: a new commit
that fixes a regression can be deployed from the repository. In
the meantime, users can boot into a pre–regression operating
system until a fix is available.

C. Operating System Management Tool — ostree

ostree is used to interact with the repository (in a manner
similar to git). It has some features found in package distri-
bution systems. For example, it provides triggers which are the
analogous to the postinst scripts available in rpm. This feature
allows ostree to run scripts after a checkout. The utilities
can be necessary to update links and cache of shared libraries,
icons, among others (similar to the way scripts are run after
the installation of packages). In addition, ostree integrates a
checkout into the boot process of a Linux system. This makes
it possible to have multiple operating system versions installed,
each of them booting in a restricted environment, only sharing
the user data.

Table I lists its basic commands, which are categorized
in regular and administrative commands. The former groups
commands similar to git, whereas the later groups commands
to deploy a system and require superuser privileges.

IV. LIMITATIONS

OSTree is currently functional, although still under devel-
opment. It is being used to monitor and build over 200 git
repositories, and is being used by some GNOME contributors
to follow the development.

35



Table I
BASIC COMMANDS OF THE OSTREE TOOL

Regular Commands
init Initialize a new empty repository
pull Pull a remote content into the local repository
checkout Check out a commit into a file system tree
build Build components, put the results in an ostree branch
resolve Get the source code in and take a system’s snapshot
ls Print the contents of directories
cat Show the content of a given build
fsck Check the consistency of a repository
Administrative Commands (Preceded by admin)
init Initialize a /ostree directory
deploy Check out a revision from the local ostree repository

and set up the boot loader
update-kernel Update the current kernel and the boot loader

Some of the limitations include, first, the time required
to build software is variable. Some projects can be built in
minutes after a change in the source code. However, projects
like WebKit can take several hours, making the continuous
integration slower. Second, the developers of a project using
OSTree should take care of the security updates in any part
of the operating system, not only in the software they are
developing. Even though security updates can be done via
merging new commits in a tree, they could demand more
human resources. Third, the user data is shared and can be
migrated from one older format to a newer one after an
upgrade. Although this is a rare issue, it can cause problems
to rollback to a previous version. Fourth, a similar problem
can cause the triggers performed after a checkout. However,
they can be disabled if needed.

V. RELATED WORK

dpkg and rpm, used by Debian and Red Hat based
distributions respectively, are used for building and deploying
the most popular Linux-based systems (as Debian, Ubuntu,
Fedora, OpenSuSE, etc.). These have no support for multiple
roots, which makes difficult to implement either atomic up-
grades or multiple operating systems installed in parallel [6].

Conary [7] addresses the lack of rollbacks in systems like
rpm and dpkg. Unlike traditional package systems, Conary
uses a distributed version control approach to keep track
of files in distribution. Packages are stored in a distributed
repository, from where those are picked as changsets. OSTree
set asides the concept of package and ships versions of a
whole operating system tree, it removes the need for numbered
versions of installed packages.

Razor is a package manager system that aims to replace
rpm and yum, by proving a fast implementation of package
management and dependency solving altogether. Thus, the
time window during an update will be reduced, minimizing
system corruptions when the system is in an inconsistent state.

As OSTree, NixOS [3] supports the idea of multiple and
independent systems that are bootable. In NixOS, the entire
system is based on checksums of package inputs (build
dependencies), in contrast with OSTree that calculates the
checksums based on the object content, including extended

attributes. As a consequence, in OSTree any identical data is
transparently and automatically shared on disk (as it happens
in any git repository). Additionally, OSTree is not tied to
any particular build system, it is possible to put any data
inside an OSTree repository, no matter how it was built. So
for example, while one could make a build system that follows
the approach of NixOS, it also works to have a build system
that just rebuilds individual components (packages) as they
change, without forcing a rebuild of their dependencies.

A different approach is to use the package model on
filesystems that provide snapshots, such as BTRFS or ZFS,
where it is possible to rollback to a previous state of the
system. However, the snapshots are applied to the whole
filesystem, not only to the packages installed or updated. If
the user notices a regression in one or two packages, but
has made other unrelated changes in the same filesystem (for
instance, in /etc), those changes will be lost when booting
with the previous snapshot. This can be exacerbated if the
upgrade process of a package span multiple partitions.

VI. CONCLUSIONS AND FUTURE WORK

This paper describes two problems that the package model
used in Linux-based systems have for developers of projects
like GNOME, with a high number of modules interrelated
and different kind of developers geographically distributed
that need to prepare a release of a system as a whole. In a
package model, it is not possible to have multiple versions
of the same program, which makes it cumbersome to test
development versions of a whole system without the risk of
breaking the system. In addition, the detection of regressions
can be delayed making the quality assurance process slower.
OSTree combines features from a version control and package
systems to offer multiple versions of a program and multiple
parallel installations. This makes it possible for contributors to
try builds from a project like GNOME minutes or hours after
a change has been committed in the source code repository.

REFERENCES

[1] M. Michlmayr, F. Hunt, and D. Probert, “Release Management in Free
Software Projects: Practices and Problems,” in Open Source Development,
Adoption and Innovation, ser. 234, J. Feller, B. Fitzgerald, W. Scacchi,
and A. Silitti, Eds., vol. 234, no. August 1999. Springer, 2007, pp.
295–300.

[2] I. Jackson and C. Schwarz, “Debian policy manual,” http://www.debian.
org/doc/debian-policy, 1996, accessed: 02/01/2013.

[3] E. Dolstra, A. Löh, and N. Pierron, “NixOS: A purely functional Linux
distribution,” Journal of Functional Programming, vol. 20, no. 5-6, pp.
577–615, Oct. 2010.

[4] E. Flanagan, “The Yocto Project,” in The Architecture of Open Source
Applications, Volume II, A. Brown and G. Wilson, Eds. Lulu.com, May
2012, ch. 23, pp. 347–358.

[5] S. Chacon, “Git internals,” in Pro Git. Apress, Aug. 2009, ch. 9, pp.
223–250.

[6] R. Di Cosmo, S. Zacchiroli, and P. Trezentos, “Package upgrades in
FOSS distributions: details and challenges,” in Proceedings of the 1st
International Workshop on Hot Topics in Software Upgrades - HotSWUp
’08. New York, New York, USA: ACM Press, 2008, p. 1.

[7] M. K. Johnson, E. W. Troan, and M. S. Wilson, “Repository-based System
Management Using Conary,” in Ottawa Linux Symposium, Vol. 2, Ottawa,
Ontario, Canada, 2004, pp. 557–571.

36


