Lawful Software Engineering

Daniel M. German
Department of Computer Science
University of Victoria, Canada

dmg@uvic.ca

Jens H. Weber
Department of Computer
Science
University of Victoria, Canada

Massimiliano Di Penta
Deptartment of Engineering
University of Sannio, Italy
dipenta@unisannio.it

jens@cs.uvic.ca

ABSTRACT

Legislation is constantly affecting the way in which software
developers can create software systems, and deliver them
to their users. This raises the need for methods and tools
that support developers in the creation and re-distribution
of software systems with the ability of properly coping with
legal constraints. We conjecture that legal constraints are
another dimension software analysts, architects and devel-
opers have to consider, making them an important area of
future research in software engineering.

Categories and Subject Descriptors

K.5.m [Computing Milieux|: Legal Aspects of Comput-
ingMiscellaneous; D.2.9 [Software Engineering]: Man-
agement— Licensing

General Terms
Legal Aspects
1. INTRODUCTION

Software is complex not only technically, but also from a
legal point of view. Legislation places constraints in the way
that software can be created, used, reused, integrated, and
distributed.

Free, and Open Source Systems (FOSS), but also commer-
cial software systems, are distributed under certain licenses,
that determine under which condition the software can be
used, modified, and re-distributed. Local and international
legislation places constraints in the way a software system
can be deployed and used.

At the minimum, developers should be (i) aware of con-
straints that licenses impose when they decide to integrate
somebody else’s software into their own, and (ii) aware of
the limitations that legislation, such as privacy law, imposes
on what a software system can and cannot do.

Software systems are intrinsically complex, and subject to
continuous changes. So is the law and software licenses. For
this reason, software developers are confronted often with

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

FOoSER 2010, November 7-8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

problems whose solutions require both technical and legal
expertise:
e Can I reuse source code of an existing software system,
and if yes, under which (legal) conditions?
e What architecture should I choose to integrate com-
ponents having certain licenses?
e I'm going to integrate a component for which I don’t
have the source code. Is there any way to determine
how was it source code licensed, and whether or not I
could use the component under certain conditions?
e Are there any laws that could restrict the way the soft-
ware operates?

Similarly to how previous research work proposed approa-
ches to support developers in tasks such as change impact
analysis, identification of source code vulnerabilities or de-
sign smells, we believe that there is a strong need for tech-
niques and tools that support developers in coping with legal
issues from a technical point of view. In this paper, we ar-
gue that “lawful software engineering” is an important future
challenge for the software engineering research community.

2. INTELLECTUAL PROPERTY AND SOFT-
WARE ENGINEERING

The main types of intellectual property that affect soft-
ware engineering are patents, copyright. On the one hand,
patents protect inventions, and they are monopolistic by na-
ture: the patent owner has a monopoly in its exploitation
for up to 20 years. In recent years software and business
methods patents have been an area has received significant
scrutiny due to the difficulty of implementing a legal regime
that is fair to creators, users, and society [21, 1], with some
arguing that they should be eliminated altogether [18].

On the other hand, copyright protects the expression of
an idea. Like patents, it gives a monopoly to its owner (for
a period of at least 70 years in the United States [24, Ch.3]).
Copyright provides several protections to its owner, but two
of the most important, from a software engineering point
of view, are the right to make copies of the software (e.g.,
copy verbatim source code), and the right to make derivative
works (e.g., using a software product as the basis of a more
complex one). Licenses are the legal mechanisms that the
intellectual property owner can use to allow a third party to
exploit any of these rights.

The current patent systems regime (particularly that of
the United States) makes it difficult for a software devel-
oper to determine, in advance, if her software requires a
license from the patent holder. Because copyright protects
the expression, many software programs can implement the

same idea without violating the copyright of each other (the
way many authors can write different stories of spies).

One of the goals of software engineering principles—and
especially of good design principles—is to promote reuse.
Most large software applications are not built from scratch;
they are built by combining several components such as
reused code snippets, self-contained binary libraries, or other
applications. Over the last decade, various research efforts
have focused on the technical aspects of supporting and im-
proving component-based software development processes.
For example, Garlan et al. discuss the challenges of com-
ponent development due to architecture and interface mis-
matches [7]. Typically, developers would choose a potential
software to reuse (such as libraries), and request to the man-
agement to negotiate a license to the desired component.
This license would specify, at the very least, the rights and
responsibilities of the copyright owner (the licensee) of the
work and its user (the licensee). A license typically covers
issues such as warranty, liability, and remedies in case of one
of the parties failing to obey the license, and are typically
granted via a contract (although there is some argument that
some FOSS licenses are not contracts, such as the General
Public License, see [17]).

Arguably, the advent of free and open source software
(FOSS) has created an ecosystem where software naturally
occurs. Many commercial and governmental organizations
are part of this ecosystem, where they produce and/or reuse
FOSS software as part of their typical operations.

Three recent developments have complicated licenses, and
how they are acquired:

e a recent legal shift in the view that software producers
should deliver free-of-defects software;

e the global nature of software development; and

e the growing availability of FOSS.

3. PERFECT SOFTWARE? ON WARRANTY
AND LIABILITY

The software industry has traditionally operated differ-
ent from other industry sectors when it comes to warranty
and liability concerns. A typical license agreement stipulates
that the software product is provided ’as is’ without any ex-
press or implied warranty, and that the vendor shall in no
event be held liable for any damages arising from the use
of the software. This contractual practice has increasingly
been challenged. Last year, the American Law Institute
(ALI) unanimously approved a report on the “Principles of
the Law of Software Contracts” [3]. In their introduction
to the report, the editors state, “perhaps no other commer-
cial subject matter is in greater need of harmonization and
clarification.” Principle 3.05 states that: “A transferor that
receives money or a right to payment of a monetary obli-
gation in exchange for the software warrants to any party
in the normal chain of distribution that the software con-
tains no material hidden defects of which the transferor was
aware at the time of the transfer. This warranty may not be
excluded.” In other words, the Principles suggest that the
software vendor has a non-disclaimable obligation to deliver
software that is free of material defects.

The Principles (particularly 3.05) have drawn significant
criticism by representatives of the software industry, as well
as business and legal experts. In a rare alliance, Microsoft
and the Linux Foundation have sent a joint letter to ALI
asking them to reconsider[4]. Lawyers and business experts

have expressed concerns about negative impacts on the soft-
ware industry in terms of flexibility, cost and uncertainty. In
his article “Flawed ALI Software Contract Principles”, Nim-
mer criticizes, among other points, that it is not clear what
the words “material” and “hidden” defect mean [15].

While the ALI Principles are not law but a recommenda-
tion, it has obviously been drafted with the intent to influ-
ence lawmakers. Software organizations have begun to revise
contracts to adhere to the Principles. Mark Radcliffe (Linux
Foundation) published a list of recommendations on how to
implement the Principles, including a method for disclosing
material bugs and a review of implied warranties. (“This
issue is particularly important for the implied indemnity for
intellectual property infringement”) [16].

While the ALI Principles have been issued in the U.S.
context, similar discussions are happening in other jurisdic-
tions around the world. It is clear that the software industry
will be facing significant challenges driven by changing legal
and regulatory frameworks throughout the world. A patch-
work of privacy regulations and emerging industry specific
regulations, such as the Canadian medical devices regula-
tion, which now covers all electronic health record software
systems, are further complicating the task of engineering
“valid” software. Moreover, cloud-based software systems
often cross-cuts the boundaries of regulatory frameworks—
a fact that further increases the engineering challenge.

4. THE GLOBAL NATURE OF SOFTWARE
DEVELOPMENT AND USAGE

Different types of intellectual property have different in-
ternational protections. For example, copyright is glob-
ally protected (there are small differences between countries
laws, e.g., the Canadian Copyright Act does not define the
right to make available, nor digital rights management, while
the American Act does), but patent and trademark law is
national in scope.

4.1 Whereareyou and your users?

An organization in one country might be able to use, with-
out paying royalties, a patent if they are outside the jurisdic-
tion of its owner. However, the company might be held liable
for infringement if its starts to sell its services or products
in such jurisdiction. Research In Motion (RIM), is perhaps
the best example of this risk to the computer and software
industry. RIM was sued for patent infringement by NTP
Inc. (NTP Inc. v. Research in Motion, LTD, 03-1615 (Fed.
Circ. Dec. 14, 2004). One of RIM defenses was to claim
that its processing (and potential patent infringement) oc-
curred in Canada and hence was beyond the jurisdiction of
the United States. The Federal Court panel had a different
opinion and ruled that “The location of RIM’s customers
and their purchase of the Blackberry devices establishing
control and beneficial use of the Blackberry system within
the United States satisfactorily establish territoriality under
Section 271 (a)[...]”. This ruling raised important issues of
territoriality to the point that it prompted the Canadian
Government to fill an amicus curae supporting RIM, where
it stated that “The panel’s adoption of this ‘control and ben-
eficial’ use rule also raises the risk that Section 271 (a) might
be accorded inappropriate extraterritorial application, con-
trary to the principles of comity affecting Canada and the
United States”[13] Eventually, after RIM exhausted all its le-
gal options, it payed $612.5 million to settle the lawsuit.[20].

4.2 |If wedisagree, wheredowehold atrial?

An important aspect of a contract is defining the juris-
diction that would be used to resolve any conflict between
the parties involved. Few years ago, the Faculty of Engi-
neering of the University of Victoria' decided to open-source
its Web-based Recruiting System Mamook?. The University
administration, however, deemed the Open Source Initiative
(OSI) approved open source licenses® inadequate for the pur-
pose, a decision that initiated a process that resulted in the
University of Victoria authoring a new open source license
that was eventually approved by OSI. One of the main con-
cerns of the University administration was that the jurisdic-
tion of the license should be British Columbia (at that time
no OSI-approved license allowed such a clause). Eventually
OSI approved the Adaptive Public License* that allows the
licensor to indicate the governing jurisdiction.

4.3 Sensitivedatacrossjurisdictional borders?

In 2006, there was a growing concern in Canada that sub-
contracting medical information processing to the United
States could expose individuals sensitive information to the
PATRIOT Act. In response, the Government of Canada
issued a report outlining the privacy concerns of “transbor-
der data flows”, in particular when the government sends
private and sensitive information about individuals to other
countries as part of outsourcing. The main outcome of the
report is that transborder data flows is there to stay, but
that there is a need for current privacy best practices to be-
come more uniform throughout the federal government and
for additional measures to build upon and complement the
existing safeguards [22].

5. USE THE (OPEN) SOURCE, LUKE!

The advent of free and open source software (FOSS) has
created a large ecosystem of applications, libraries and com-
ponents that are readily available for download and usage.
The intellectual property of FOSS is protected by licensing
mechanisms and copyright notices that determine how an
open source can be used, even impacting the architecture of
a system [10].

Dealing with issues related to FOSS licensing is not trivial,
as at the time of writing there are 65 open source licenses
approved by the OSI, and many more in use; each of them
imposing particular constraints concerning how one can use
and/or change a software. In fact, identifying the license of
a single source code file is not trivial[12, 11].

In [8], German et al. demonstrated that license auditing
is a complex and difficult process. The large set of existing
licenses, the constraints they pose, and the complex depen-
dency relationships among packages determine a situation
in which it is difficult to understand under what conditions
a package can be used and/or redistributed. Using an em-
pirical study they showed that a deeper understanding of
licensing issues requires expertise, and is need of automa-
tion (at least partially).

There are two main ways in which FOSS can be reused: as
a component, and by copying source code from one software
system to another.

Two of the authors belong to the University of Victoria
Zhttp://sourceforge.net/projects/mamook
3http://www.opensource.org/licenses
‘http://www.opensource.org/licenses/apll.0.php

5.1 Reusing FOSS components

Using a FOSS component as part of another one poses
several challenges:

What is the license of the component? As demon-
strated in [8] this is not trivial to determine, but it is a
responsibility of the people using the component to make
sure that they do it lawfully[17]. The problem is even more
complex when the component’s source code is not available.
In such a case, a viable solution would be to decompile the
source code and use the information it contains to query
Web code searching repositories like Google Code Search®
or Koders® to identify the component’s license [5].

Licenses mismatch between components. In [10]
showed that Bugzilla is created with components that use
10 difference licenses. It is therefore important to know how
licenses can (or cannot) interact between each other [2].

How are the components connected? The method of
interconnection between components might restrict the in-
tegrator. For example, the Free Software Foundation (FSF)
lists “GPL-incompatible” licenses; in their view, any pro-
gram under such licenses (such as the Eclipse Public License,
or the Mozilla Public License) cannot link to a GPL licensed
library. [23] proposed a method to determine the way some
components are connected by instrumenting a C compiler.

Tracking the evolution of the license of the com-
ponent. When the license of the component changes, the
licensee might not be able to continue using it. This is a
growing concern as many licenses are been updated[6].

5.2 Copying FOSS

Copying of source code across FOSS is well documented
[14, 9]. Sojer and Henkel interviewed several hundred devel-
opers and discovered that copying FOSS code by commer-
cial enterprises is now common, but in many cases their
software developers lack understanding of the legal risks
associated with this activity and their organizations lack
policies to guide them[19]. As described in [9], embedding
source code from another copyright owner creates several
challenges, such as:

e Tracking the copyright owner and license of the copied
code.

e Determining if the license of copied code is compatible
with the intended use of the code.

e Managing the evolution of the copy with respect to the
original is difficult.

6. THE FUTURE

As outlined in this document, legislation affects in many
manners the way that organizations (and their software de-
velopers) create, deliver and operate software systems. The
last three years have seen a healthy growth in research in
this field, as exemplified by the Requirements Engineering
And Law Workshop (started in 2008) and the inclusion of
a “Licensing” session at ICSE this year (2010). We believe
the following areas will be worthwhile of future research in-
vestigation:

Improving software development models and meth-
ods to include legal issues. As described above, the im-
pact of the law is undeniable in how software is built. As a
consequence, models and methods should now incorporate
these concerns as an important part of the software devel-

Shttp://www.google.com/codesearch
Shttp://www.koders.com/

opment process. In particular: how to handle FOSS as part
of a system (either used as a component, or when the code
is copied), how to handle restrictions in processing and data
exchange imposed by legislation (such as privacy laws), and
how jurisdictional issues might affect the creation, use and
deployment of a software system.

Educating developers, lawyers, judges and the pub-
lic in general. The ACM Computing Curriculum includes
intellectual property as one of its topics, but needs to be ex-
panded to include the implications of using FOSS, how pri-
vacy and other legislation effects what a software system can
and cannot do, or how it should do it, and how jurisdictional
issues affect global software development (and deployment).
The software engineering research community should also be
concerned on how to educate the public, lawyers, and end
users on these issues.

Auditing methods for intellectual property evalu-
ation and compliance. This is important for those who
create the software (are my software developers complying
with legal issues?), for those who buy software created by
others (is the product I am buying privacy compliant, intel-
lectual property compliant, and in general law compliant?)
and for those wanting to acquire organizations whose assets
include software (who owns the code? if needed, does the
organization have a proper license to use it?).

Continuing with the creation of tools to assist soft-
ware developers and auditors in their evaluation of
licensing compliance of a software system. This is a
very underdeveloped area of research; currently this evalua-
tion is typically done manually by experts.

In conclusion, researchers should aim towards work whose
goal is to assist developers in the creation of lawful software
systems.

7. REFERENCES

[1] P. S. Abril and R. Plant. The patent holder’s dilemma:
buy, sell, or troll? Commun. ACM, 50(1):36-44, 2007.

[2] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi.
Intellectual property rights requirements for
heterogeneously-licensed systems. Int. Conf on
Requirements Engineering, 0:24-33, 2009.

[3] American Law Institute. Principles of the Law of
Software Contracts. 1IPLSCOT, 2010.

[4] K. Copenhaver and H. Gutierrez. Re: Principles of the
Law of Software Contracts. Linux Foundation and
Microsoft Corporation
http://microsoftontheissues.com/downloads/
Microsoft-LinuxFoundation-Letter.pdf, May 2009.

[5] M. Di Penta, D. M. German, and G. Antoniol.
Identifying licensing of jar archives using a code-search
approach. In Proc. of the 7th Working Conference on
Mining Software Repositories, MSR 2010, 2010.

[6] M. Di Penta, D. M. German, Y.-G. Guéhéneuc, and
G. Antoniol. An exploratory study of the evolution of
software licensing. In Proc. of the 32rd International
Conference on Software Engineering (ICSE’10), pages
145-154, 2010.

[7] D. Garlan, R. Allen, and J. Ockerbloom. Architectural
Mismatch or Why It’s Hard to Build Systems Out Of
Existing Parts. In ICSE, pages 179-185, 1995.

[8] D. M. German, M. Di Penta, and J. Davis.
Understanding and auditing the licensing of open

(10]

(11]

(14]

(15]

source software distributions. In 18th Int. Conf. on
Program Comprehension (ICPC’2010), pages 84-93,
May 2010.

D. M. German, M. Di Penta, Y.-G. Guéhéneuc, and
G. Antoniol. Code siblings: Technical and legal
implications. In Proc. of the 2009 Working Conference
on Mining Software Repositories, MSR 2009, pages
81-90, 2009.

D. M. Germén and A. E. Hassan. License integration
patterns: Addressing license mismatches in
component-based development. In 31st Int. Conf. on
Software Engineering, ICSE, pages 188-198, 2009.

D. M. German, Y. Manabe, and K. Inoue. A
sentence-matching method for automatic license
identification of source code files. In 25nd IEEE/ACM
International Conference on Automated Software
Engineering (ASE 2010), 2010. To be presented.

R. Gobeille. The FOSSology project. In MSR *08:
Proceedings of the 2008 International Conference on
Mining Software Repositories, pages 47-50, 2008.
Government of Canada. Brief Amicus Curiae of the
Government of Canada in Support of the Request for
Rehearing En Blanc made in the Combined Petition
By Research in Motion, LTD. for Pannel Rehearing
and Rehearing En Blanc. 03-1615 in the United States
Court of Appeals for the Federal Circuit, Jan 2005.

J. Krinke, N. Gold, Y. Jia, and D. Binkley. Cloning
and copying between gnome projects. In MSR, pages
98-101, 2010.

R. Nimmer. Flawed ALI Software Contract
”Principles”. http://www.ipinfoblog.com/archives/
licensing-law-issues-flawed-ali-software-contract-\
principles.html, May 2009.

M. Radcliffe. Dealing with the Flaws: Principles of
Software Contracts. Linux Foundation
www.linuxfoundation.org/publications/
radcliffe_ali_alert.pdf, May 2009.

L. Rosen. Open Source Licensing: Software Freedom
and Intellectual Property Law. Prentice Hall, 2004.

P. Samuelson. Software patents and the metaphysics
of section 271(f). Commun. ACM, 50(6):15-19, 2007.
M. Sojer and J. Henkel. License Risks from Ad-Hoc
Reuse of Code from the Internet: An Empirical
Investigation. Preprint, available at http://papers.
ssrn.com/sol3/papers.cfm?abstract_id=1594641.
A. R. Sorkin. Research In Motion Settles Patent Suit.
Legal Column, New York Times, March 2006.

M. E. Thatcher and D. E. Pingry. [Software patents]
The good, the bad, and the messy. Commun. ACM,
50(10):47-52, 2007.

Treasury Board of Canada Secretariat. Privacy
Matters: The Federal Strategy to Address Concerns
About the USA PATRIOT Act and Transborder Data
Flows. Catalogue No. BT22-104/2005E-PDF, 2006.
T. Tuunanen, J. Koskinen, and T. Kéarkké&inen.
Automated software license analysis. Automated
Software Eng., 16(3-4):455-490, 2009.

United States Copyright Office. Circular 92 Copyright
Law of the United States of America and Related
Laws Contained in Title 17 of the United States Code,
June 2003.

