
The Flow of Knowledge in Free and Open Source Communities

Daniel M. German

Software Engineering Group

Department of Computer Science

University of Victoria

Victoria, Canada

dmgerman@uvic.ca

Abstract

In this paper we present a survey of the methods used
by a selection of successful free andopen source projects to
exchange, store and retrieve knowledge. In particular, we
look into mailing lists, Internet Relay Chat, conferences,
and code reviews. We explore how historical records left
during the development become stored knowledge that can
be subsequently retrieved. We also discuss the existence
of meta-communities (composed of members of different
communities) that allow knowledge to flow fromone com-
munity to another.

1. Introduction

Free and open source software (FOSS) development
has established itself as an effective way to develop soft-
ware. Perhaps one of its most radical features is that
its members are willing to give away knowledge with-
out any direct remuneration1. This is particularly strik-
ing in an era in which intellectual property (mainly in
the form of copyright and patents) is highly protected
for its economic value. For this reason FOSS has been
frequently compared to science where its participants
publish their findings into a commons for the benefit
of everybody [24].

The “community” is an important concept in FOSS
development. It refers to the individuals and organiza-
tions that participate in the development of a FOSS
application. Some participants are totally passive (by

1 There are many individuals who are paid by a third party
to contribute to a FOSS project. In this case we can con-
sider these individuals as “proxies” of the organization who
hire them. These organizations are, therefore, contributing
knowledge without expecting a direct remuneration for their
contributions–but there are most likely seeking indirect bene-
fits.

strictly using an application without ever participat-
ing in its development) to totally active (the so called
“core” developers who are responsible for most of the
contributions to the project. The ways in which a mem-
ber of the community can participate in the develop-
ment of a project are extremely wide. Table 1 lists
various types of knowledge contributions that indi-
viduals can make. Organizations (beside paying de-
velopers to contribute to a FOSS projects) can con-
tribute knowledge directly to FOSS projects. For ex-
ample the original source code of Mozilla was donated
by Netscape Corporation; and IBM has pledged to li-
cense 500 patents to open source projects [9]).2.

One of the main challenges that FOSS projects have
is the need to attract and nurture new members. It is,
therefore, important to reduce the learning curve of
newcomers to ease their integration into the develop-
ment process and to encourage them to start contribut-
ing to the application as easily as possible.

In this paper we are interested in answering the fol-
lowing research questions:

• What are the methods used by a FOSS commu-
nity to share, store, and diffuse knowledge?

• Is knowledge exchanged between communities, if
so, how?

The methodology we have used is based on three
main components:

• A literature review regarding how knowledge is
created and diffused in FOSS communities.

• A qualitative analysis of the following success-
ful FOSS projects: Apache, Evolution, Linux,
GNOME, Mozilla, gcc and postgreSQL.

2 Organizations can also indirectly contribute knowledge in the
form of training and diffusion, and by paying employees to be-
come contributors.



Type of contribution Description

Source code This is perhaps the most visible contribution.
Documentation In the form of Web sites, user and developer manuals, magazine and Web arti-

cles, books, FAQs, etc.
Internationalization Translations of the software and documentation into different languages.
Code Reviews The discussion and improvement of source code contributions.
Testing and debugging Formal or informal testing and debugging.
Bug reports Submit bug reports that can be used by the development team to track and fix

defects.
Configuration management
and build process

Tasks required to maintain the environment necessary for multiple developers to
participate.

Distribution of binaries Preparation of binaries for download by any user interested to try the software.
Suggestions Ideas on how to improve the product.
Answers to developer’s ques-
tions

They help other developers who are contributing.

Answers to user’s questions They help individuals who are trying to use the software.
Release management Dedicated to prepare and advertise new releases.
Legal They provide information regarding legal issues, such as licensing, and other in-

tellectual property issues.
Web site development and
maintenance

These contributions usually gather knowledge from other sources and make sure
it is persistent. It can also include those who contribute to wikis.

“Pointers” to knowledge Perhaps the smallest type of contribution it involves answering a question by
“pointing” to another source of information (such as a Web site or a research
article).

Distribution packaging Knowledge needed to prepare packages to be included in distributions (such as
SUSE, Red Hat, Fedora, etc).

Table 1. Type of Knowledge Contributions to a FOSS project

• The experiences of the author as a contributor to
several FOSS projects 3.

The paper is divided as follows. Section 2 addresses
the question of how knowledge is shared, stored and
diffused within a FOSS community. Section 4 analyzes
how knowledge is exchange across FOSS communities.
We conclude with a discussion of our findings and di-
rections for future research.

2. How does knowledge flow within a

FOSS community?

Research has shown that two important motivations
that individuals have to become FOSS software devel-
opers are to: 1) improve their career perspectives (by
acquiring and refining skills) and 2) be recognized in
the meritocracy of a FOSS community[14, 8]. This im-
plies the existence of knowledge flow in FOSS com-
munities from those who have it to those who seek

3 Theauthor is currently one of the core developers of Panotools.
Panotools is a group of tools to combine two or more pho-
tographs into a panoramic one, see panotools.sourceforge.
net.

it. Given the variety of knowledge required to pro-
duce software (programming skills, application domain,
management skills, marketing skills, etc) individuals
might become both a producer and a consumer of
knowledge depending on the skills that they bring to
a given project (and the skills that they are particu-
larly interested in learning and improving).

The flow of knowledge from one individual to an-
other requires the creation and development of an in-
frastructure that supports it. It is also necessary to
create mechanisms that permit its short and long term
storage and retrieval.

From its beginning the Internet and FOSS have co-
existed in a symbiotic manner: the Internet was born
thanks to the sharing of source code and source code
has thrived as the Internet matures. It is undeni-
able that the Internet is the main channel over which
knowledge flows within a FOSS community. Project-
sponsored conferences (see section 2.3) are perhaps the
only form of exchange of knowledge in FOSS that does
not require the Internet (although it uses it for its or-
ganization).

As FOSS projects evolve their communities evolve
as well: new members join, some leave. At the same



time some of its members shift their roles, depending
on many factors, including the time they can invest to
the project [18]. Nakakoji et. al use Legitimate Periph-
eral Participation theory (LPP) to explain this evolu-
tion: “a community of professionals evolves by repro-
ducing itself when peripheral new members (i.e. ap-
prentices) become fully qualified members (i.e. mas-
ters). The process of becoming a master is the pro-
cess of learning. [...] the community member acquires
the skills and knowledge embodied in the community
by interacting with master members” [18]. One impor-
tant conclusion of the study by Nakakoji et. al is that
the evolution of FOSS communities is determined by
two factors: “the existence of motivated members who
aspire to play roles with large influence, and the so-
cial mechanism of the community that encourages and
enables such individual role changes” [18].

Like in any other software development team, mem-
bers of a FOSS community eventually leave it for mul-
tiple reasons (these can range from lack of motivation
or available time, to passing away). Without a con-
stant influx of new members, any FOSS community will
eventually collapse. A FOSS community, therefore, re-
quires the flow of knowledge from one member to an-
other, and the storage (temporary and permanent) of
that knowledge so it can be retrieved and reused by new
members (this knowledge becomes the project’s com-
munity memory).

2.1. Email

Email is ubiquitous as a medium for the flow of
knowledge in FOSS. A project usually starts with a
mailing list that links developers and users (active–
those that contribute to the discussions–and passive–
those that only use the product without contributing
anything in return). In an empirical examination of 100
FOSS projects Krishnamurthy found that most of them
have very few contributors and, on the average, have 2
mailing lists [13]. As a FOSS community grows its dis-
cussions are split into different types of mailing lists.

The most commonly found lists are those dedicated
to announcements, users, and developers. In the large
projects that we analyzed we found that mature, widely
used projects tend to have highly specialized mailing
lists (Mozilla, for example, has 81). We discovered that
there exist five main types of mailing lists:

• Announcements. Typically a low traffic, moder-
ated list, it is intended to be used for announce-
ments regarding the status and evolution of the
project.

• Users support. Mailing lists dedicated to help
members who have questions regarding how to use
the product.

• Development. Developers use them to discuss the
development of the project. Some project tend to
have very specialized development lists (for exam-
ple, Apache has a packagers- list for the discus-
sion of issues related to how apache is packaged,
distributed and made available to users).

• Software process related. The messages in these
lists are usually produced by tools that support the
development process (for example, a version con-
trol mailing list that has one message per source
code commit, or a bug mailing list that has one
message per bug reported).

• Documentation. These lists are dedicated to the
discussion of documentation and the Web sites of
a project.

We also found that all the surveyed projects archive
their mailing lists and the majority provide some type
of searching mechanism to them.

2.2. IRC

IRC (Internet Relay Chat) is an old Internet pro-
tocol that supports many-to-many instant communi-
cation. IRC has been widely used to link communi-
ties even before the advent of the World-Wide Web.
Although it is rarely reported, many FOSS projects
have IRC channels where different contributors can
meet and exchange knowledge. Apache, for example,
uses the IRC channel #Apache in irc.freenode.net4.
The flow of knowledge in the Apache IRC channel is
demonstrated by Rich Bowen (who is a member of the
Apache Foundation and contributes documentation to
the server). He writes a monthly column based on his
experiences in the Apache’s IRC channel[1].

GNOME has its own IRC server that hosts more
than three dozen channels 5. Similarly Mozilla main-
tains its own IRC server with more than two dozen
channels (almost 60% of them are in languages differ-
ent from English) 6.

IRC channels provide a very informal place to ex-
change information at all different levels. Perhaps
its main drawback is that its discussions are rarely

4 irc.freenode.net holds several hundred IRC channels for
FOSSprojects, includingpostgreSQL, theFreeSoftwareFoun-
dation, RedHat, and mySQL http://freenode.net/primary
groups.shtml.

5 http://gnomesupport.org/wiki/index.php/IrcChannels

6 http://irc.mozilla.org/



archived. They are similar to informal verbal con-
versations happening in the offices and halls of an
organization.

2.3. Conferences

Several FOSS projects are organizing conferences
where developers can meet face to face. Conferences
are usually organized around presentations that are in-
tended to exchange knowledge, or to train other con-
tributors. They are also a place where discussions re-
garding the future of the project usually take place.
From the projects that we surveyed these organize con-
ferences:

• GUADEC. This is the GNOME Developers con-
ference (it has taken place once every year since
2000)7.

• ApacheCon. The Apache Conference, like
GUADEC, has run every year since 2000. This
year it has three versions: Europe, Asia and US8.
GUADEC and ApacheCon are two of the old-
est running conferences organized by a FOSS
community.

• PostgreSQL Anniversary Summit. The 10 year an-
niversary of PostgreSQL is being marked with the
project’s first conference.9

2.4. Code reviews

Code reviews or code inspections were introduced
by Fagan as a formal process in which the development
team invests time and energy to review the code being
produced [3]. In the most formal approach, code re-
views are conducted during meetings for which the de-
velopers are expected to prepare. These meetings can
result in the detection of defects or in recommenda-
tions on how the source code can be improved.

Because FOSS developers are usually geographi-
cally dispersed they are unable to conduct formal code
reviews. Instead they conduct asynchronous reviews
using email as the main communication channel. In
an empirical study of software inspections Johnson
and Tjahjono found no significant differences between
meeting-based, and asynchronous code reviews. They
did, however, found that the total effort required in
meeting-based reviews was significantly higher when
compared to asynchronous reviews (and hence the ef-
fort to find a bug was higher in meeting-based reviews)
[10]. In FOSS code reviews have two main objectives:

7 http://guadec.org/

8 http://apachecon.com

9 http://conference.postgresql.org/

• They minimize defects and provide better, cleaner
code with less total effort.

• They improve the skills and knowledge of the re-
viewers and authors of the code.

Few FOSS projects have a formal process for code
reviews, and those that do are usually mature, and
expected to be reliable. From the projects we stud-
ied only Apache, Mozilla and Linux include code re-
views as part of their development process. Mockus et.
al found that Apache had a similar defect density than
several commercial products. They argued that “fewer
defects are injected into the [Apache’s] code, or that
other defect-finding activities such as inspections are
conducted more frequently or more effectively.” [17].

In Mozilla every contribution should be reviewed by
at least two independent reviewers. The first type of re-
view is conducted by the module owner or the module
owner’s peer (every module has an owner and a set of
peers–individuals who are knowledgeable on that mod-
ule). This review catches domain-specific problems. A
patch that changes code in more than one module must
receive a review from each module. The second type of
review is called a super review. The goal of the super
review is to find integration and infrastructural prob-
lems that may effect other modules or the user inter-
face10. By requiring both types of reviews Mozilla en-
sures that someone with domain expertise and some-
one else with overall module and interface knowledge
have approved the patch.

The Mozilla maintainers acknowledge that super re-
views are a good way for “intermediary and advanced
training”, but “are a terrible mechanism for training in
basic practices”. The main concerns Mozilla maintain-
ers have is that super-reviewers are very few and do not
have the time to train other contributors: “[a] super-
review [should] be the last stop for training.” [23].

Over the years Apache has experimented with dif-
ferent types of code reviews. Apache currently uses
a Commit-Review model, where core developers are
allowed to commit changes that are then expected
to be reviewed. The review takes place in the devel-
opers mailing list, an open environment where any
contributor can participate. In an empirical study of
code reviews on Apache we found that 9% of post-
reviewed commits generated a discussion [21]. Apache
post-commit reviews are not only useful as a way to
find and eliminate defects, but because they happen in

10 Mozilla’s core review process requires the identification of in-
dividuals as module owners, module peers, and super review-
ers. We can consider these as “knowledge” roles. Research is
needed to understand how are these roles filled and who fills
them.



a public forum (a mailing list) they also create aware-
ness and diffuse knowledge, even to those who are not
active participants in the review.

Code reviews practices in FOSS have started to in-
fluence industry. In [15] Lussier described how his com-
pany development process was (unexpectedly) influ-
enced by their experiences participating in an FOSS
community. Lussier was surprised that the code review
practices of the Wine project resulted in better code,
always ready to be released. His company decided to in-
troduce a similar process in-house.

3. Storing and Retrieving Knowledge

As a software project evolves, a wealth of informa-
tion is created (some automatically, some manually).
Some of this information records communications be-
tween its contributors and users; other explains how the
software system is evolving. We have previously demon-
strated that historical records can be used to success-
fully reconstruct how a software system evolves [5].

In our research into the evolution of FOSS projects
we have found that developers of mature FOSS projects
value these records and ensure, often through pol-
icy, that these records be maintained; they form what
Cubranic calls the “community memory” [2] of the
project. In a study of historical records kept by FOSS
communities we have observed the following types [7]:

• The source code itself. Version control systems al-
low developers to inspect the state of a file at any
given time in the past, helping them understand
how the system evolves. Source code sometimes
is used as a communication medium, where notes
and TODO lists are embedded as source code com-
ments (such as the ones described in [25]).

• Defect tracking databases, such as Bugzilla, are
frequently found in large FOSS projects. They pro-
vide a valuable source of information regarding de-
fects (and their fixes) and feature requests.

• ChangeLogs are files that are usually updated
when the system is changed, and provide a descrip-
tion of the given change. The Free Software Foun-
dation requires all its projects to have a Change-
Log file. In those projects that have them, we have
discovered that they are almost always properly
updated [6].

• The Version Control logs of mature projects tend
to have large, meaningful explanations. In the
project Evolution, the average size of a log is 306
bytes, in Apache 1.3 it is 160 bytes, and in Post-
greSQL it is 160 bytes, to cite just a few.

• Email is seen as an important source of discussion
about the way software evolves.

• Code reviews are valuable discussions that pro-
vide good insight on why certain changes are per-
formed the way they do. [21]. In contrast, ver-
sion control logs and comments are shorter, usu-
ally omitting discussion of less satisfactory solu-
tions. Having a link to a discussion might save
the maintainer many hours in code comprehen-
sion and avoids time wasted trying to figure out
why a given part of the system was implemented
in a certain way.

• Documentation, including Web sites and wikis.
FOSS projects are frequently using version control
systems to store this type of information, which
will allow contributors to inspect their state at any
given date.

Some sources of information have a well defined for-
mat, such as version control logs and ChangeLogs, and
are easy to correlate to lines of affected code. Correlat-
ing Bugzilla and source code is more difficult. It usu-
ally involves textual analysis of the description of the
version control log. For example in [6], we describe reg-
ular expressions that were useful in the extraction of
Bugzilla numbers from CVS commit logs. Correlating
email messages is even more difficult. For Apache, we
have been successful in creating automated and manual
heuristics that help in the correlation of messages dis-
cussing code reviews [21]. Code reviews often involve
diffs that contain the version in the repository against
which the diff was made. However, general email dis-
cussions are much more difficult to correlate. Problems
include determining the context of the discussion, re-
constructing message threads, and resolving names to
email addresses.

In [7] we proposed the concept of Evolutionary An-
notations (EA), documentation that describes how a
software system is evolving. EAs are information ex-
tracted (some automatically, some manually) from his-
torical software development records. The purpose of
evolutionary annotations is to explain why a project
evolves in the way it does (contrary to documentation,
that explains what the “current” system is doing). We
proposed methods to retrieve them and correlate them
to the source code, and described the design and imple-
mentation of a prototype for Eclipse that can filter and
present these annotations alongside their correspond-
ing source code.



3.1. How are communities using historical

records?

Without controlled experiments it is difficult to de-
termine how contributors use the historical informa-
tion of a project, mainly because it is difficult to iden-
tify when a contributor access historical records, and
for what purposes.

We have found, however, evidence that the infor-
mation is being used by developers. Figure 1 shows
excerpts from 2 email messages in which an question
is answered by providing a link to older email discus-
sions. One particular service that appears to be useful
to contributors of FOSS is Gmane.org. Gmane is ded-
icated to provide three main services to FOSS mail-
ing lists: archiving of messages (including permalinks),
presenting email lists with a Web interface (including a
blog-like option, and RSS feeds), and a powerful search
engine. As the examples in figure 1 show the service
provided by Gmane is being used by FOSS communi-
ties to retrieve and reuse the knowledge stored in their
mailing lists.

The existence of tools intended to extract in-
formation from version control logs (such as Bon-
sai11, cvschangelog12, CVS History13, CvsGraph14,
ViewVC15 and many others) suggests that ver-
sion control logs are useful to the developers. Un-
fortunately there have been no studies that try to
understand how contributors (in both FOSS or pro-
prietary systems) extract knowledge from version
control repositories, in which circumstances it is use-
ful, and how this extraction can be improved.

4. Is knowledge exchanged between

communities?

One of the greatest assets that a FOSS project has
is the size and diversity of its community.

In the proprietary software world knowledge is ex-
changed between organizations in very few ways. For
example, a organization hires an employee from an-
other organization, or by creating “knowledge ex-
change” contracts where an organization is willing
to exchange its knowledge with another in ex-
change for some consideration. FOSS exchange of
ideas and knowledge is often compared to that of sci-
ence, where knowledge is created and exchanged with-
out any requirement for compensation16 [24].

11 https://www.mozilla.org/bonsai.html

12 http://cvschangelog.sourceforge.net

13 http://cvshist.sf.net/

14 http://www.akhphd.au.dk/∼bertho/cvsgraph/

15 http://www.viewvc.org/

Most FOSS communities have as their main goal the
creation of a FOSS product, and the exchange and flow
of knowledge and information is a side effect of it. While
it is true that most FOSS projects have very small com-
munities (one main contributor, with very few users),
some communities have been able to achieve large num-
bers. The larger the community, the larger the pool of
knowledge available to it. Even though most contri-
butions come from few developers, any given knowl-
edge contribution can have an important impact on
the project. These contributions take many different
forms: for example, pointers to sources of information
(a person posts to a mailing lists a URL to knowledge
stored by another project) or domain knowledge (in
many cases users are more knowledgeable about the
domain of an application than the core developers).
Even just a note saying: “this program works great un-
der ‘such’ operating system” might provide valuable
knowledge.

FOSS projects are usually part of a larger FOSS
ecology. They depend on other applications, and other
applications might depend on them17. This creates a
meta-community, where contributors and users from
one community contribute (directly or indirectly) to
the other communities. It is not uncommon for con-
tributors of one project to subscribe to mailing lists in
another project to gain awareness of where the project
is and how it is evolving. In [22] Spinellis and Szypersky
described how the Xine multimedia player18 required
11 different libraries. Xine developers, therefore, re-
quired to know what these libraries did, and changes in
these libraries would have had an effect on Xine, mak-
ing them stakeholders (and users) in their development.
Madey et al [16] used network analysis to demonstrate
that FOSS projects create large clusters (a project is re-
lated to another project if they share at least one com-
mon contributor). They found that the largest cluster
in Sourceforge connects 35% of its projects. Research
is needed to find out if and how knowledge flows from
one community to another via its common contribu-
tors.

16 In recent years it is more frequent to find researchers who are
opting for patenting their ideas before they make them public.

17 In some cases commercial applications are part of this ecology.
panotools is a library and collection of applications that are
used by some commercial applications (PTGui and PTassem-
bler). These applications are very interested in fixing bugs and
improving panotoolsandhavecontributed to its development;
furthermore, the users of those commercial applications are in-
direct users of panotools–which benefits from their bug re-
ports and suggestions.

18 http://xinehq.de/



[..]

> We switched physical mail servers and in transferring our ezmlm

> mailing lists and the vpopmail/qmailadmin installation ran into some

> problems. First, all mailing lists are freezing when receiving an

> e-mail from a subscriber with the following message in qmail-send

> log: "Sorry,_substitution_of_

> target_addresses_into_headers_with_#A#>_or_#T#>_is_unsafe_and_not_permitted./"

This thread may help you :

http://article.gmane.org/gmane.mail.ezmlm/4297

http://article.gmane.org/gmane.mail.ezmlm/4298

[..]

[..]

> I have seen several posts for this but none resolve my issue.

You haven’t been looking hard enough ;-)

http://www.lowagie.com/iText/faq.html#jsp

http://article.gmane.org/gmane.comp.java.lib.itext.general/8850

[..]

Figure 1. Excepts from mail messages that reference older discussions.

4.1. The Slashdot Effect

Blogs have an influence in the exchange of knowledge
among the FOSS communities. Slashdot (slashdot.org,
“News for Nerds, Stuff that Matters”) is a blog dedi-
cated to the discussion of technology news, particularly
those of interest to FOSS communities [19]. News en-
tries are usually submitted by readers. Its infrastruc-
ture enables readers to post comments to the entries
and to rank those submitted by their peers (in an ef-
fort to improve the signal-to-noise ratio of comments).
A special section called “Ask Slashdot” invites read-
ers to submit questions that might be of general in-
terest, expecting other readers to post answers to the
questions. Slashdot conducts interviews and publishes
book reviews too.

Slashdot provides a place where members of differ-
ent FOSS communities can gather and discuss issues
that might be of their interest. Slashdot is particularly
useful to provide awareness, e.g. what other FOSS com-
munities are doing, and issues that affect FOSS in gen-
eral. It also serves as a place to advertise important
advancements in a FOSS project.

Another site worth mentioning is Groklaw19.
Groklaw specializes in the discussion of intellec-
tual property law and its effects on the FOSS world.
It was formed in 2003 as a response to the legal chal-

19 http://groklaw.net

lenges brought by SCO against IBM and other orga-
nizations with regard to some intellectual property
found in the Linux Kernel (for an overview of the le-
gal case see [4]). Groklaw’s model is very similar
to Slashdot’s, although it maintains stronger edito-
rial control, resulting in higher quality of entries and
comments. Groklaw demonstrates that a Web site
can link two different communities (in this case typ-
ical FOSS contributors and legal experts) to create
an environment where knowledge is shared, ex-
changed and enhanced between them. This is encap-
sulated in a comment by its creator, Pamela Jones:
“Some of the volunteers knew things I didn’t, espe-
cially about the code issues, but they didn’t realize
what they knew was useful legally. [...] People are hun-
gry to understand legal news, and they want to help.”
[11].

5. Discussion and Future Work

This paper reports preliminary results on how
knowledge flows in FOSS communities. We have
found that FOSS communities have developed mul-
tiple methods to communicate and exchange knowl-
edge. None of the projects surveyed has exactly the
same methods. This can be due to one or several fac-
tors: for example, their application domains are
different; or their communities work better with dif-
ferent methods.



We require a lot of research in this area. We need to
perform quantitative empirical studies on how FOSS
projects generate, share, store and retrieve knowledge.
We also need to perform controlled experiments to
compare methods and to understand their advantages
and disadvantages, and under which scenarios they can
be useful. The results from these studies can help FOSS
communities to select the methods better suited for
their particular needs. We need to explore new meth-
ods to exchange and store knowledge, and equally im-
portant, how to make it easier to find knowledge (ei-
ther who has it, or by finding and retrieving it).

Acknowledgments

The author would like to thank the anonymous re-
viewers for their suggestions to improve this paper.
This research is supported by the National Sciences
and Engineering Research Council of Canada.

References

[1] R. Bowen. A day in the life of #apache. O’Reilly ON-
Lamp.com Apache DevCenter, 2003-2005. Montly col-
umn.

[2] D. Cubranić, G. C. Murphy, J. Singer, and K. S. Booth.
Learning from project history: A case study for software
development. In Proceedings of the ACM Conference
on Computer Supported Cooperative Work, pages 82–91,
2004.

[3] M. Fagan. Advances in software inspections. IEEE
Transactions on Software Engineering, 12(7):744–751,
1986.

[4] L. Geppert. Battle of the Xs. Spectrum, 40(8):16–17,
Aug. 2003.

[5] D. M. German. Using software trails to reconstruct the
evolution of software. Journal of Software Maintenance
and Evolution: Research and Practice, 16(6):367–384,
2004.

[6] D. M. German. An empirical study of fine-grained soft-
ware modifications. Journal of Empirical Software En-
gineering, 2005. Accepted for publication Sept 25, 2005,
to appear in the Special Issue of Best Papers of ICSM
2004.

[7] D.M.German, P.Rigby, andM. A. Storey. UsingEvolu-
tionary Annotations from Change Logs to enhance Pro-
gramComprehension. In3rd InternationalWorkshop on
Mining Software Repositories (MSR 2006), May 2005.

[8] G. Hertel, S. Niedner, and S. Hermann. Motivation
of software developers in open source projects: An
Internet-based survey of contributors to the Linux ker-
nel. Research Policy, 32:1159–1177, 2003.

[9] IBM Corporation. IBM Statement of Non-Assertion of
Named Patents Against OSS. http://www.ibm.com/

ibm/licensing/patents/pledgedpatents.pdf, Jan.
2001.

[10] P. M. Johnson and D. Tjahjono. Does every inspection
really need a meeting? Journal of Empirical Software
Engineering, 5(3):9–35, 1998.

[11] P. Jones. EOF: open legal research. Linux J.,
2004(121):13, 2004.

[12] B. Kogut and A. Metiu. Open-source software develop-
ment and distributed innovation. Oxford Review of Eco-
nomic Policy, 17(2):258–264, 2001.

[13] S. Krishnamurthy. Cave or Community? An Empirical
Examination of 100MatureOpenSourceProjects. First
Monday, 7(6), June 2002.

[14] K. R. Lakhani and B. Wolf. Perspectives on Free
and Open Source Software, chapter Why Hackers Do
WhatTheyDo:UnderstandingMotivation andEffort in
Free/Open Source Software Projects, pages 3–21. MIT
Press, 2005.

[15] S. Lussier. New tricks: How open source changed the
way my team works. IEEE Software, 21(1):68–72, 2004.

[16] G. Madey, V. Freeh, and R. Tynan. Free/Open
Source Software Development, chapter Modeling the
F/OSS Community: A Quantitative Investigation, in
Free/Open Source Software Development. Idea Pub-
lishing, 2004.

[17] A. Mockus, R. T. Fielding, and J. Herbsleb. Two Case
Studies of Open Source Software Development: Apache
and Mozilla. ACM Transactions on Software Engineer-
ing and Methodology, 11(3):1–38, July 2002.

[18] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida,
and Y. Ye. Evolution patterns of open-source software
systems and communities. In IWPSE ’02: Proceedings
of the International Workshop on Principles of Soft-
ware Evolution, pages 76–85,NewYork,NY,USA, 2002.
ACM Press.

[19] N. Poor. Mechanisms of an online public sphere: The
website Slashdot. Journal of Computer-Mediated Com-
munication, 10(2), 2005.

[20] E. Raymond. The Cathedral & the Bazaar. O’Reilly,
1999.

[21] P. Rigby and D. M. German. A preliminary examina-
tion of code review processes in open source projects.
Technical Report DCS -305-IR, University of Victoria,
2006.

[22] D. Spinellis and C. Szypersky. How is Open Source Soft-
ware Affecting Software Development. IEEE Software,
21(1):28–33, Jan-Feb 2004.

[23] The Mozilla Foundation. Frequently Asked Ques-
tions about mozilla.org’s Code Review Process.
http://www.mozilla.org/hacking/code-review-
faq.html, June 2006.

[24] J. Willinsky. Unacknowledged convergence of open
source, open access, and open science. First Monday,
10(8), August 2005.

[25] A. T. T. Ying, J. L. Wright, and S. Abrams. Source code
that talks: an exploration of eclipse task comments and
their implication to repositorymining. InMSR ’05: Pro-
ceedings of the 2005 International Workshop on Mining
software repositories, pages 1–5, New York, NY, USA,
2005. ACM Press.


