
Understanding and Auditing the Licensing of Open Source Software Distributions

Daniel M. German†, Massimiliano Di Penta‡, Julius Davies†

† Dept. of Computer Science, University of Victoria, Canada

‡ Dept of Engineering, University of Sannio, Italy

dmg@uvic.ca, dipenta@unisannio.it, juliusd@uvic.ca

Abstract—Free and open source software (FOSS) is often
distributed in binary packages, sometimes part of GNU/Linux
operating system distributions, or part of products dis-
tributed/sold to users.

FOSS creates great opportunities for users, developers and
integrators, however it is important for them to understand the
licensing requirements of any package they use. Determining
the license of a package and assessing whether it depends
on other software with incompatible licenses is not trivial.
Although this task has been done in a labor intensive manner
by software distributions, automatic tools to perform this
analysis are highly desired.

This paper proposes a method to understand licensing com-
patibility issues in software packages, and reports an empirical
study aimed at auditing licensing issues in binary packages of
the Fedora-12 GNU/Linux distribution. The objective of this
study is (i) to understand how the license declared in packages
is consistent with those of source code files, and (ii) to audit
the licensing information of Fedora-12, highlighting cases of
incompatibilities between dependent packages.

The obtained results—supported by feedback received from
Fedora contributors—show that there exist many nuances in
determining the license of a binary package from its source
code, as well as cases of license incompatibility issues due to
package dependencies.

Keywords: Software licenses, evolution, mining software

repositories, open source systems, empirical study.

I. INTRODUCTION

The advent of free and open source software (FOSS) has

created a large ecosystem of applications, libraries and com-

ponents that are readily available for download and usage.

Often these applications/libraries/components are distributed

together with the operating system, and this happens for the

various distributions of the GNU/Linux operating system.

The intellectual property of FOSS is protected by licensing

mechanisms and copyright notices that determine how an

open source can be used, even impacting the architecture of

a system [1].

Dealing with issues related to open source licensing is not

trivial, as at the time of writing there are 65 open source

licenses approved by the Open Source Initiative, and many

more in use; each of them imposing particular constraints

concerning how one can use and/or change a software.

License auditing is usually a manual analysis (assisted by

custom scripts) performed by GNU/Linux distributions (such

as Debian, OpenSuse, RedHat, and Ubuntu).

When one installs a new application/library in a Unix

system, this is often done from what is known as a bi-

nary package (such as RPM packages in Fedora/Redhat-like

distributions or .deb packages in Debian-like distributions).

Other than the various artifacts composing the applica-

tion/library, the package also contains metadata describing,

among other things, (i) under what open source license the

package is distributed (which we call the declared license

of the binary package), and (ii) the list of other packages

required in order to successfully install and use the current

package (its required packages) [2].

From a legal point of view, modifying and redistributing

a FOSS package poses two important issues:

1) Can we trust the declared license of the package? i.e.,

is that license consistent with those of the files the

package contains?

2) Do the dependency requirements of a binary package

create potential legal concerns? Software with different

licenses can be combined to create larger systems, but

such combinations can increase the chance for license

incompatibilities.

In this paper we describe a method to help understand

licensing issues that can arise from changing, combining,

and re-distributing packages in open source distributions.

First, we identify the license of all files contained in the

source code from which the binary package is created

(the source package). This gives us a detailed overview of

licenses present in the source code of a package, and allows

us to identify possible inconsistencies with the declared

license of the binary package. Second, we combine the

dependency graph of a binary package with the declared

licenses of its dependencies, trying to identify any license

inconsistencies.

We have carried out a large empirical study aimed at

analyzing licensing issues in the entire Linux-based Fedora-

12 operating system. Results indicated the presence of

some inconsistencies between the declared licenses and the

source code ones, as well as problems arising because

of dependencies between different packages. For many of

these potential problems, we contacted Fedora people or the

package maintainers, obtaining clarifications and feedback

about the problems we pointed out, as reported in the paper.

In many cases, either Fedora or the package maintainers



made changes to address such issues.

The main contribution of this paper is a better understand-

ing of how auditing of licenses happens in a large ecology of

packages that use many different licenses. This information

is valuable towards the creation of computer support to assist

legal auditors in their day-to-day work.

The paper is organized as follows. After a discussion

of related work in Section II, Section III details some of

the problems that can arise when combining open source

software distributed under different licenses. Section IV

describes the proposed method to audit open source distri-

butions for license compatibility issues. Section V describes

the empirical study we carried out on Fedora-12. Results

are presented and discussed in Section VI, while Section

VII discusses the threats to validity. Finally, Section VIII

concludes the paper and outlines directions for future work.

II. RELATED WORK

This section describes related work concerning (i) the

analysis and understanding of legal issues in software sys-

tems, and (ii) the analysis of software distributions.

In recent years legal issues and problems concerned with

intellectual property have triggered a series of research

works. Licenses impose constraints and thus can be defined

as logical formulae constraining what can and cannot be

done with a system. Software licensing patterns have been

recently studied by German et al. [1] using such a formal-

ization of licenses. They introduced several legal patterns,

along with examples of occurrences of these patterns. As

German et al. [1] did, we also consider constraints imposed

by open source licenses and, in particular, we rely on

these constraints to mine inconsistencies (i) between licenses

declared in the packages and source code licenses, and (ii)

incompatibilities due to dependencies between packages and

libraries having different licenses.

German et al. [3], presented a study of the influence of

software licenses on code migration between the FreeBSD,

Linux, and OpenBSD kernels. Their findings support the

hypothesis of a preferential code flow induced by permis-

sive licenses from FreeBSD and OpenBSD towards Linux.

Hindle et al. [4] discovered that many of the largest commits

correspond to changes to the licenses or copyright owners

of files. We share with these previous works the heuristics

used to identify comments and to compare them using in-

formation retrieval methods, although we specifically focus

on comments related to licenses, i.e., on licensing evolution

and changes to copyright years.

Recently, Di Penta et al. [5] investigated how licensing

statements in source code files change to address the evolu-

tion of software licenses—eg licenses such as GPL evolve

from version 2 towards version 3—or to cope with the

need for re-distributing the software in a certain way (eg

the Java Development Kit changed its license to allow its

redistribution together with GNU/Linux). We share with that

work the finding about licensing change, in fact this is one

of the reasons for misalignment between licenses declared

in the packages and licenses in source code files.

There have been some attempts towards the creation

of automatic environments for the verification of software

licenses [6], [7]. In both cases, they take a simple approach:

packages are licensed under a single, well defined license,

and the dependency data is used to identify potential vi-

olations. Alspaugh et al. [7] propose a requirement-based

approach: the objective is to determine any restrictions

in the way components are integrated into a system be-

fore this is built. Instead, Tuunanen et al. [6] propose a

more comprehensive approach: their environment identifies

licenses from source code, uses compiling information to

determine if two components are connected to find potential

violations. In both cases the approach has been evaluated

against small applications composed of few components,

and they do not deal with the complexities of a large Linux

distribution containing more than 10,000 binary applications

and hundreds of thousands of source code files (we found

327,286 source code files in Fedora-12).

Although specific on issues related to software licens-

ing, this is not the first study aimed at analyzing en-

tire GNU/Linux distributions. Robles et al. [8] and then

González-Barahona et al. [9] related the evolution of soft-

ware distributions with the evolution of single applications,

finding that the former influences the latter. German et

al. [2] proposed a method to analyze build dependencies

in software distributions, and used it to analyze the Debian

GNU/Linux distribution. They showed how the retrieved

inter-dependencies helped to understand how packages are

used and variants in which the package can be installed.

Similarly to this work, they used package descriptions to

analyze dependencies—although their study was done on

Debian packages, while our study focuses on RPM packages.

Stemming from that idea, we propose to integrate package

dependency information with license information to identify

potential cases of re-distribution with license incompatibili-

ties.

III. CHALLENGES OF COMBINING OPEN SOURCE

COMPONENTS

This section briefly summarizes the main licensing incom-

patibilities that can arise when integrating and redistributing

open source packages. The GNU Public License (GPL) is

a very common one for open source packages, and poses

strict reuse constraints. For these reasons, and due to lack

of space, we focus our attention on incompatibility issues

involving the GPL license.

The GPL is a reciprocal license: one of its most onerous

constraints is that any software that reuses code licensed un-

der the GPL should also be licensed under the same version

of the GPL. Code under some licenses—such as the Eclipse

Public License (EPL)—cannot be reused in GPL licensed



packages. See http://fedoraproject.org/wiki/Licensing for a

compatibility list of licenses in Fedora.

In GNU/Linux distributions most binary packages have

many dependencies. This results in many different combi-

nations of licenses. According to the interpretation of the

Free Software Foundation—the author of the GPL—when

a program includes source code licensed under the GPL,

the resulting program should also be licensed under the

same version of the GPL. Similarly, the GPL imposes strong

conditions on how a GPL package—in the following referred

as callee—can be reused by its caller. If the caller uses the

callee via fork/exec then the caller can have any license.

However, if the caller uses the callee via linking (static or

dynamic), then the caller has to be licensed under the same

version of the GPL as the callee. For further details on this

problem see related papers [1] and [10].

Given the above stated constraints imposed by the GPL,

it is worthwhile to identify:

1) packages with a declared license that is not the GPL,

but that contain files distributed under a GPL license.

For example, the declared license of a package is the

BSD license, but it contains files under a GPL license;

2) similarly to (1), packages distributed under a license

that is not the GPL, but depend on libraries or compo-

nents distributed under the GPL;

3) packages that have as a declared license a version of the

GPL different from the one declared by some (or all) of

its files. For example, the license of the binary package

is the GPLv2, but some of its files are distributed under

the GPLv3. It is common to license files under the GPL

version ’X’ or any newer version; for example, GPL

version 3 or any newer version, which we abbreviate

GPLv3+. For this reason, if a file is licensed with the

option of a newer version, then we only consider it an

issue if the declared license of the binary package is an

older version than the one found in the source code.

4) Similarly to (3), packages declaring a given version

of GPL that depend on libraries/components having a

different GPL version.

IV. AUDITING LICENSE ISSUES IN OPEN SOURCE

PROJECTS

This section describes the proposed approach for license

auditing. It consists of three steps, aimed at (i) extracting

declared licenses and dependencies from the distribution

packages, (ii) extracting and classifying actual licenses from

the source code files, and (iii) using the information ex-

tracted in steps (i) and (ii) to detect licensing incompatibility

issues.

Step I: Extracting information from software package

metadata: in this first step we extract information from the

package management system of a GNU/Linux distribution.

In the context of this paper, this was done for RPM (binary)

packages of the Fedora-12 GNU/Linux Distribution1. To

extract this information, we used the RedHat’s library rpm-

build, which provides parsing of Fedora .spec files (including

expansion of macros). The .spec file of each source code

package was split into each of its component fields (a pair

key, value). A similar process can be followed for other

package management systems, such as Debian’s dpkg.

We downloaded both the Fedora-12 source DVD, com-

prising 1,475 source code packages, and the Fedora-12

binary (i386) DVD, comprising 2,399 binary packages (one

source package can generate one or more binary packages).

For each source package we extracted and parsed its corre-

sponding .spec file. For each binary package we executed

the rpmquery command and obtained:

• general information, such as a brief description of the

package, the package version and author name;

• the declared licenses(s) of that package, as indicated by

the package’s maintainer in the metadata;

• the list of resources the package provides, in terms of

components and libraries (static binary libraries, shared

objects, Java packages, Perl and TCL packages);

• the list of resources the applications the applications in

package require.

It is important to emphasize that the dependency graph

extracted from the source package might not be identical

to the one extracted using rpmquery. The declared depen-

dencies (those in the .spec file) are described in terms of

names of binary packages; the ones found using rpmquery

are names of files (executables and shared libraries) needed

by a binary package to be installed and to properly function.

We therefore see the information from the .spec file and from

rpmquery as complementary.

Sometimes, a package requires one among several possi-

ble packages; for example, a package requiring a DBMS

might use either MySQL or PostgreSQL, but not both.

In such a case, the multiple possible dependencies are

prioritized using heuristics such as:

• between two (or more) packages providing the same re-

source, the one having the same license (or a similar or

compatible one) with respect to the requiring package

is chosen;

• between two packages offering the same resource but

with different versions of the license, we choose the one

offering a newer version. For example, if one package

requires qt, and two other different packages provides

qt 3 and qt 4.5, the latter is chosen. Similarly, if a

package requires the jre (Java Runtime Environment),

provided by java-1.5.0-gcj and java-1.6.0-openjdk, then

the latter is chosen.

In summary, we determine (i) the license of each file of

the source code of a package; (ii) what binary packages are

1http://fedoraproject.org/



created from a source code package and their corresponding

license; and (iii) what other binary packages need to be

installed before a given binary package.

Step II: Classifying source code file licenses: this step

aims at identifying the actual licenses for the source files

contained in each package. We first extract the files from

the source package, and then we use the Ninka license

identification tool [11] to classify their licenses. Ninka

uses a sentence-based approach (based on a set of regular

expressions) to detect the presence and identify open source

licenses in the header comments of source code files. Ninka

is capable of identifying more than 110 licenses, and has

been designed to identify licenses in source code files. For

each file Ninka analyzes, it outputs the name of any license

it detects in it, or that no license was found. If it detects the

existence of a license, but it does not know it, then it reports

such file as having an unknown license. An evaluation of

Ninka found that it was not capable of finding the license of

10% of the files in the evaluation sample, but when it found

a license, it has an accuracy of 93% [11].

It is worthwhile to note that a single source package

often corresponds to multiple binary packages. Therefore,

it is necessary to map the source code files—for which

we classified the license using Ninka—to binary packages.

There is no simple way to do that; in this work, where

this happens, we mainly use information related to the

source package directory structure: for example some source

packages put files used to produce different binary packages

in different sub-directories, others put files for contrib or

plugin in specific directories.

Step III: Mining inconsistencies: the information ex-

tracted following the steps described above is stored in

a relational database. We query this database to identify

incompatibilities according to constraints described in Sec-

tion III and, specifically: (i) cases where the file license

is different from the one declared in its package; and (ii)

cases for which the presence of dependencies creates license

incompatibilities.

V. EMPIRICAL STUDY

This section describes the study we carried out to show

the relevance of the problem discussed in this paper and to

show the applicability of the proposed approach. The goal of

this study is to analyze open source packages from software

distributions, with the purpose of understanding the kinds of

licenses being used by different packages and the presence

of dependencies, at various levels, between packages with

different licenses. The quality focus is the compliance of

redistributions and installations of open source packages

with respect to licenses, and the perspective is of researchers,

interested to investigate the presence of possible license

incompatibilities in open source software distributions, and

to develop a method able to audit the distribution to mine the

presence of such incompatibilities; the study can also be seen

from the perspective of users, integrators and developers

who acquire, modify, combine and re-distribute open source

packages, and needs to be aware on the feasibility—from

a legal point of view—of what they are doing. The context

consists in 2,399 binary packages and their corresponding

1,475 source (src) packages from the GNU/Linux distribu-

tion Fedora-12.

The study aims at addressing the following research

questions:

• RQ1: To what extent do the licenses declared in the

package metadata reflect the licenses in source code

files contained in the packages? This research question

aims at addressing a first level of incompatibility, i.e.,

those within a package. The license declared in the

package metadata often summarizes what kinds of

licenses can be found within the package. It can happen,

however, that the package contains files with different

licenses and, above all, licenses incompatible with the

declared one. We divided the analysis of RQ1 in three

parts:

1) Analysis of source code packages that contain

source code files distributed under one license only.

2) Analysis of source code packages that contain

source code files distributed under two or more

licenses.

3) A deeper analysis of packages with files distributed

under the GPL, which we deem to be one of the most

important licenses from the perspective of a license

audit. This analysis is, in turn, divided into four parts:

I Source code is under the GPL, but the declared

license does not mention the GPL. Due to the

reciprocity requirement of the GPL, we expect

that if there is GPL source code in a package,

its declared license should be the GPL too.

II Mismatch of GPL version. Any package con-

taining a file distributed under the GPL should

be licensed under the same version of the GPL.

III The declared license includes the GPL, while

the source code does not. If the declared license

is the GPL, we would expect that the source

code will also contain files under the GPL.

IV The declared license includes the GPL, however

there is at least one file under an incompatible

license. A package licensed under the GPL

should not include files with incompatible li-

censes.

• RQ2: Do dependencies between packages highlight

license incompatibilities? This research question ana-

lyzes license incompatibilities between packages, i.e., it

checks whether a package depends on libraries, shared

objects, or components, and whether such dependencies

use incompatible licenses with respect to the one(s) of

the package.



Table I
OCCURRENCES OF LICENSES FOR SOURCE PACKAGES HAVING CODE

DISTRIBUTED WITH ONE LICENSE ONLY.

Declared License Source License # Src Pkgs # Bin Pkgs

gplv2+ GPLv2+ 118 145

asl 2.0 Apachev2 28 48

lgplv2+ LesserGPLv2.1+ 27 36

mit MITX11noNotice 21 30

mit MITold 18 23

lgplv2+ LibraryGPLv2+ 16 23

gpl+ or artistic SameAsPerl 14 14

gplv2 GPLv2 11 12

bsd BSD3 11 11

gplv2 GPLv2+ 10 14

Source License in all tables refers to the license as identified by Ninka.

VI. RESULTS

This section reports results of our package-based license

verification to answer the research questions formulated in

Section V. Data for replication is available on-line2.

A. RQ1: To what extent do the licenses declared in the

package metadata reflect the licenses in source code files

contained in the packages?

Determining whether the licenses “declared” in a package

match those “stated” in source code files is not straight-

forward, as a package often contains files with several

different licenses. The number of licenses found in each

package varied between 1 and 41, with a median of 2

licenses, a 25% percentile of 1 license, and a 75% percentile

of 3 licenses. The package with the highest number of

licenses is the Linux Kernel, which contains 41 different

licenses (such as the LGPLv2, LGPLv2.1, GPLv2, GPLv2+,

BSD3, BSD2, MIT/X11, etc), even though it is known to be

licensed under the GPLv2.

In the following we report results for RQ1, concerning

specifically (1) the analysis of source code packages contain-

ing files distributed under one license only, (2) the analysis

of source code packages containing files distributed under

two or more licenses, and (3) a deeper analysis of packages

containing files distributed under the GPL.

1) Packages using one license only: For these packages,

we expect that the declared license of each of the binary

packages that it generates to be identical. There exist 429

source code packages with only one license (29% of the

total). Table I lists the most frequent licenses, and the

number of corresponding binary and source packages. It can

be noticed that the license names differ from those reported

by Ninka; i.e., Fedora names the Apache License Version 2

as the afl 2.0, while Ninka uses the term ApacheV2. Also,

Ninka’s license granularity level is higher than Fedora’s; for

example, the table lists MITold and MITX11noNotice in the

source code, while Fedora simply declares it as mit license,

of which they are variations; similarly, the LesserGPLv2.1+

and the LibraryGPLv2+ are both listed as lgplv2+.

2http://juliusdavies.ca/uvic/fedora12/

A less trivial problem is in the interpretation of the license.

For example, many Perl packages are licensed under “The

Same Terms as Perl” (see [1]), however Fedora lists them

as gpl+ or artistic which is the license used by Perl.

To distinguish real cases of mismatches from the above

cases of synonymy or of slight variations, we manually built

an equivalence table between Fedora and Ninka licenses.

Taking into account these equivalences, we discovered po-

tential inconsistencies between the declared license and the

source code license for 86 packages. However, many of these

inconsistencies had a simple explanation. For 22 packages

Ninka detected a license “SeeFile”, which indicates the

license is contained in another file, but because Ninka only

processes one file at a time, it does not scan the contents

of such files. For 6 packages, the declared license contained

the license of the source code, plus the the General Free

Documentation License (gdfl) that applies to documentation

only, and thus could not be found in the source code. We

therefore ignored the gdfl when comparing the declared and

the source code license. The remaining 64 (out of 86) cases

represent real mismatches between the declared and source

code licenses.

We manually inspected 12 of the largest packages (from

Table II), trying to understand why the declared license was

different from the source code license. We classified the

results into three levels of warning: (i) OK, where Fedora

reported the correct license; (ii) Suspicious, where Fedora

reported what appears to be an incorrect license with respect

to those contained in the source code; and (iii) Unknown,

where it was not possible to compare Fedora’s declared

license against the source licenses detected by Ninka. The

OK category contains the following cases:

• Incorrect license identification. These are the cases

where Ninka failed to identify some of the licenses stated

in the source code files (these were reported by the tool as

unknown).

• Optional component. Part of the source package is

distributed under a license different from the one declared in

the binary package; however such a part is not built into the

binary package. For instance, the libpng package contains

a “contributions” directory with files under the GPLv2, but

these are omitted during compilation.

• Package used as a component. A source code package

contains a component that uses a license different from the

one declared in the binary package. However, such a license

is compatible with the declared one. For instance, the opensp

package contains a directory intl that contains internalization

code released under the LGPLv2+ license. This directory is

likely to be used as a component, and would not interfere

with the license of opensp.

• Inconsistent declared license. The declared license of au-

tomake includes the license of the installation script (which

was not part of our analysis). Similar installation scripts

appear in other packages without their scripts’ licenses



Table II
RESULTS FOR MANUALLY SCANNED SOURCE CODE PACKAGES WITH ONE LICENSE THAT IS INCONSISTENT WITH THE DECLARED LICENSE.

Warning Level Issue Source Package Declared License Source License

OK Incorrect license identification mysql-connector-java gplv2 with exceptions GPLv2

glade3 gplv2+ and (gplv2+ and lgplv2+) and lgplv2 GPLv2+

imagemagick imagemagick LesserGPLv2+

gzip gplv2 and gfdl GPLv2+

mpfr lgplv2+ and gplv2+ and gfdl LesserGPLv2.1+

libpng zlib GPLv2+

OK Optional component libpng zlib GPLv2+

OK Used as a component opensp mit LibraryGPLv2+

OK Inconsistent declared license automake gplv2+ and gfdl and mit GPLv2+

Suspicious Fedora False Positive eclipse-cdt epl and cpl EPLv1

Suspicious License change bsf asl 1.1 Apachev2

mtools gplv2+ GPLv3+

Unknown License was not found ortp lgplv2+ and vsl LesserGPLv2.1+

appearing in the declared license, so including such is not

consistent across all packages. There is no legal issue with

automake, since the install.sh script is distributed under an

academic license (MIT).

The Suspicious category contains:

• Fedora false positives. Fedora lists a license that is

mentioned in the documentation, but that it is not actually

used to license the source code of the package. However,

differently from the case of the gdfl mentioned above, such a

license cannot be discarded a-priori as it is not just a license

used for the documentation, but might be used to distribute

source code. Specifically, the Common Public License is

mentioned in the documentation files of eclipse-cdt, however

its source code files are licensed under the EPLv1.

• Evolution of license. The package recently upgraded its

license. We believe that Fedora performed the license anal-

ysis before these packages changed their license, and might

not be aware of the change. The issue of licensing evolution

is particularly frequent and relevant in open source systems,

as described in [5]. The packages bsf, and mtools belong

to this category, as their license changed from GPLv2+ to

GPLv3+, while Fedora was still declaring them as GPLv2+.

We reported these issues to Fedora, and we were informed

that they were already aware of bsf (it is fixed in Fedora-

13), while they acknowledged the problem for mtools, and

at the time of writing were looking into it.

2) Binary packages with different licenses that originate

from the same source code package: As mentioned in

Section IV, a source package can generate more than one

binary package. Sometimes a source package generates sev-

eral binary packages with different declared licenses among

them. This happens for 31 source packages. We selected

and manually analyzed the 13 largest ones to understand

their licensing. The results are shown in Table III and can

be categorized as follows:

• Split library from programs. Many libraries are licensed

under the LesserGPL or the LibraryGPL (LGPL). How-

ever, in some cases, their source packages might contain

executables—licensed under the GPL—that use the libraries.

Libraries are placed in one binary package and programs in

another.

Table III
SOURCE PACKAGES THAT GENERATE BINARY PACKAGES WITH

DIFFERENT LICENSES (SEPARATED BY SEMICOLON).

Warn Issue Declared Source

Level License Package

OK Executables gplv2; lgplv2 cdparanoia

are separated cups

from libraries e2fsprogs

gplv2+; lgplv2+ audit

gnome-bluetooth

gimp

glade3

gnome-desktop

gnome-doc-utils

gnome-panel

kdemultimedia

OK A few files gpl+ or artistic; perl

with a differ- (gpl+ or artistic) and

ent license (gplv2+ or artistic)

OK Each file has gplv2; gplv2+; smc-fonts

its own license gplv2+ w/ exceptions;

gplv3+ w/ exceptions;

gplv3+ w/ exceptions and

gplv2+ w/ exceptions and

gplv2+ and gplv2

• A small number of files having a different license. We

found one case (Perl), for which there was one single file

with a different license than the others. The source package

of Perl creates 19 binary packages, but one of them has a

different license (GPLv2+). Only one source code file of the

Perl package uses this license.

• Each file has its own license. The source package

smc-fonts creates 8 different binary packages. Each binary

package corresponds to one source file only, and each source

file has a different license.

3) Packages with files distributed under the GPL: As

described in Section III we focus on specific issues related

to the GPL license. As explained in Section V, we divided

the analysis into four parts, discussed below.

I) Source code is under the GPL, but the declared license

does not mention the GPL. We scrutinized the declared

licenses of binary packages that did not include any of

the different versions of the GPL, trying to find possible

inconsistencies. Sometimes a source package contained one

or more files under the GPL with an exception that allowed

their use under another license. For example, any interpreter

generated by bison is licensed under the GPL with a special



exception that allows its use under other licenses. We

therefore ignored any files with a GPL license that included

an exception. After removing these cases, there were 115

source packages left that do not declare the GPL even though

they include at least one file licensed under the GPL. We

inspected 18 of them to understand why the GPL was not

mentioned. The results of the inspection are summarized in

Table IV.

Table IV
SOURCE PACKAGES WITH GPL SOURCE CODE, BUT ITS LICENSE DOES

NOT INCLUDE THE GPL.

Warning

Level

Issue Source Package

OK Split library from programs libnice, libopenraw, libgxim,

libgsf, kdelibs, gnome-python

OK Plugin opal

OK Contrib or extras spambayes, antlr, subversion,

cscope, xscreensaver

OK Tests or Demos mesa, pcsc-lite

OK Special permission vim

OK License name or interpre-

tation

wpa supplicant, iptools

Suspicious Many GPL versions kdebindings

• Split library from program. As mentioned above, many

libraries split their packages into actual libraries (in one

binary package, licensed under the LGPL), and applications

using those libraries (in another, under the GPL).

• Plugin. The architecture of the system allowed some files

to have a different license.

• Contrib or extras. These files were contained in the

source package, but they were not used to build the binary

packages.

• Tests or demos. These packages contained test cases or

demo programs under the GPL.

• Special permission. vim contained one file under the GPL

with an explicit note that stated permission to use it under

a different license.

• License name or interpretation. In one case we could not

find an explanation of what a declared license was (iptools),

while in the other case the name of the declared license

(wpa suplicant) was actually a disjunctive license of the

GPL and BSD.

The only suspicious package kdebindings contained many

files under many packages. This is a very heterogeneous

package, composed of many different library bindings for

different programming languages, each with different li-

censes, and probably the reason for many licensing conflicts.

We have reported this to Fedora, and at the time of writing

they are looking into it.

II) Mismatch of GPL version. Table V reports the cases

in which a declared license of the package was different

than the license of at least one file contained in the source

package (excluding again files with a GPL-with-exception

license). The first 18 cases (marked as Ok) do not represent

real problems: if the source code permits to license it under

a newer version of the stated license (the “+” suffix in

Table V
PACKAGES DECLARING A SPECIFIC GPL LICENSE VERSION AND

CONTAINING FILES WITH A DIFFERENT VERSION OF GPL (ONLY FIRST

10 DUE TO SPACE RESTRICTIONS).

Warning # Binary Declared Source

Level Packages License License

Ok 15 gplv3+ GPLv2+

2 gplv3 GPLv2+

1 gplv3+ with exceptions GPLv2+

Suspicious 13 gplv2+ GPLv3+

5 gplv2 GPLv3+

2 gplv2+ and gfdl GPLv3+

2 bsd and gplv2 and ijg and mit

and public domain

GPLv3+

1 gplv3+ and redistributable, no

modification permitted

GPLv2+

1 gplv3+ GPLv2

1 gplv2 and gplv2+ and bsd

with advertising and public

domain

GPLv3+

Table VI
ANALYSIS OF SOME SOURCE PACKAGES THAT CONTAIN FILES

DISTRIBUTED WITH DIFFERENT GPL VERSIONS.

Warning Issue Package Declared Source

Level License License

Suspicious License fetchmail gplv1+ GPLv2+

Evolution iptables gplv1+ GPLv2+

cvs gplv1+ GPLv2+

bash gplv2+ GPLv3+

bison, gplv2+ GPLv3+

Some inconsistent mtools gplv2+ GPLv3+

files vinagre gplv2+ GPLv3+

Contradictory vinagre gplv2+ GPLv3+

documentation

our abbreviations), then it can be embedded in a binary

package with a newer license. The other 25 cases (marked as

Suspicious) require a more in-depth analysis. We inspected

10 of these suspicious packages, and reported the results of

such an inspection in Table VI. As it can be seen, the main

issues we found are:

• License evolution. As previously reported, some packages

have changed license, but the declared license is obsolete.

Fedora has acknowledged this problem and it will be re-

solved in the next version.

• Inconsistent files. In two packages (mtools and vinagre)

there were some files with an inconsistent license (GPLv3).

Fedora has been notified and is looking into these packages.

• Contradictory documentation. In one case (vinagre) the

package documentation states GPLv2+, while some files

were GPLv3+.

III) The declared license includes the GPL, while the source

code does not. This situation arose in 46 different packages.

We looked at 8 of them, and the results of the inspection

are summarized in Table VII. In particular, we found the

following situations:

• See File. The license is stated in a file separated from the

source code;

• Same as Perl. As described before, the package has the

same license as Perl (gplv1+ or artistic).

• License not classified. Ninka could not classify the license



Table VII
ANALYSIS OF SOME SOURCE PACKAGES THAT ARE LISTED AS GPL BUT

DO NOT CONTAIN ANY FILE UNDER THAT LICENSE.

Warning Issue Packages

Level

Ok See File cups

Same as Perl perl-dbi, perl-libwww-perl

Files not classified less, procps

License in documentation libofa

Suspicious Incorrect declared license rpcbind, nc

Table VIII
PACKAGES UNDER THE GPL WITH CODE UNDER THE BSD-4

Warning Issue Packages

Level

Ok Copyright by UofC ftp, guile, kernel, nmap, rpm, squid

Copyright by NetBSD exiv2, rpcbind

Sample code bash

Suspicious Files using BSD-4 cups, isdn4k-utils, xen

of any of the GPL files of the package.

• License in documentation. In libofa the license was

found in the README file. Its source code had no licensing

information.

• Incorrect declared license. Fedora had incorrectly labeled

three packages (nc, rpcbind, and libofa) as GPL. For nc, the

word GPL was found in the source code documentation “No

GPLs, Berkeley copyrights or any of that nonsense.”. Thus,

very likely, Fedora developers used a simple text matching

approach (in this case) to mine licenses in packages to be

re-distributed. This problem has been fixed in Fedora-13.

For rpcbind and libofa the installation scripts contained the

GPL.

IV) The declared license includes the GPL, however there

is at least one file under an incompatible license

We focused our attention to GPL packages with at least

one BSD-4 file. We analyzed all cases (12 packages), and

the results are summarized in Table VIII.

• Copyright owner clarification. Most of these cases were

resolved because the original copyright owner of the BSD

license, the The Regents of the University of California,

indicated that the “advertising” clause can be removed from

any source code under the license. Hence, any BSD-4 license

file from them is effectively under the BSD-3. A similar

situation arises when the copyright owner is the NetBSD

Foundation.

• Tests or Demos. bash contained BSD-4 code but only in

test cases.

Only three cases (isdn4k-utils, xen and cups) contained

suspicious files, which we reported to Fedora and/or up-

stream.

B. RQ2 Do dependencies between packages highlight li-

cense incompatibilities?

There exist 1,516 different combinations of caller li-

cense/callee license, with a median frequency of 3, a min-

imum of 1, and a maximum of 2,424. Not surprisingly,

the most common callee licenses allow reuse with few

Table IX
SUSPICIOUS COMBINATIONS BETWEEN CALLER AND CALLEE.

Caller Lic Callee Lic Occurrences

gplv2+ python 75

gplv2+ gplv3+ 64

lgplv2+ python 50

gplv2 gplv3+ 30

mit gplv2+ 27

lgplv2+ gplv3+ 22

asl 2.0 gplv2+ 20

gplv2 python 19

mit python 16

mit (gpl+ or artistic) and (gplv2+

or artistic)

15

conditions (i.e., Apache, BSD, MIT, zlib, lgpl, artistic). We

pruned the list of 1,516 license combinations, with the aim of

keeping only the ones highlighting potential incompatibility

issues. Specifically, we pruned out:

• Cases where the caller and the callee have the same

license.

• Cases where the license of the caller is one of the

licenses of the callee.

• Combinations that do not cause license incompatibility

problems. For example, when the callee uses a license

(such as LGPL, MIT, BSD) that allows the caller to use

any license.

The pruning left a total of 309 different combinations,

with a median (and minimum) frequency of 1, and a maxi-

mum of 75. Table IX shows the most common combinations.

Whether or not a given combination of licenses is per-

mitted or not also depends on the way that the caller

interconnected to the callee. For example, according to the

Free Software Foundation, an application distributed under

the GPL cannot link to a component under the Python

license (before version 2.0.1); however it can run the Python

interpreter as an executable.

Through manual inspection we discovered the caller inter-

connected with the callee using exec/fork in the majority of

the suspicious combinations. For example, in many cases

where we observed a callee with a Python license, the

package in question was the Python interpreter, presumably

used as an executable (and not linked as a library). Similarly,

when a package distributed under the GPLv2+ uses a callee

distributed under the GPLv3+, it is often the case the callee

is a common Unix command, such as grep, gawk, gdb, m4,

cpio, tar, wget, find, etc. Careful investigation of these Unix

commands found that many of the callee packages contained

only executables, documentation, and configuration files,

therefore precluding any chance of dynamic or static linking.

In a few cases where library files were found among these

commands, they were either not in a location available for

dynamic-linking, or a close analysis of the combination

found an overt exec/fork.

We sampled the remaining suspicious dependencies look-

ing for potential problems. Below we describe some of the

most interesting cases:



• kdebase-workspace. Code distributed (GPLv2) was

linking to GPLv3+ code (packages libqzion and

libqedje). We inquired the Fedora License maintainers

about it. They discovered that these libraries were being

used by programs in kdebase-workspace that were

licensed under the GPLv2+, even if the entire package

was licensed only as GPLv2. Hence, theoretically,

such programs could be extracted from the package

and relicensed under the GPLv3+, the license of the

packages they were linking to.

• Two GPLv2 source packages (lvm2, pilot-link) were

using readline (GPLv3+). These appeared related to the

evolution and change of licenses: in previous versions

of Fedora the readline package used the GPLv2+.

Fedora is currently trying to resolve these by replacing

the readline dynamic links in these two cases with the

libedit library, which provides a similar function but is

licensed under the BSD3.

• php (which uses the PHP license, considered to be in-

compatible with the GPL) was also dynamically linking

to readline. This problem was created because php’s

build scripts would link to either readline or libedit if

such are available in the build environment (with php

giving readline priority). We contacted Fedora, and they

promptly fixed their build environment to prevent php

from using readline.

VII. THREATS TO VALIDITY

This section discusses the main threats to validity that can

affect the study we performed.

In particular, threats to construct validity may concern

imprecision in the measurements we performed. Specifically,

there could be imprecision in Ninka license classification,

although previous studies indicate a precision of 96.6%.

Also, licenses declared in the Fedora packages can be, in

turn, imprecise or out-of-date. However, the latter does not

constitute a threat as we are interested to point out problems

due to incorrectly declared licenses.

Dependency analysis done using rpmquery is also a

source of imprecision. Above all, rpmquery can only identify

dependencies between an entire package and some compo-

nents. This does not mean that all applications contained in

the package have these dependencies. Future work will aim

at performing dependency analysis at a lower level of detail,

also analyzing linking dependencies of single application.

To mitigate such a threat, we analyzed all cases of possible

inconsistency, to check whether it was a real inconsistency

or, instead, a false positive.

Threats to internal validity do not apply to observational

studies like the one we performed. Nevertheless, as reported

in our discussions, we have checked the cases where our

automatic analysis reported symptoms of likely licensing

problems, and we tried to understand the reasons by (i)

manually inspecting the package (metadata and licenses

Table X
RESULTS OF INTERACTIONS WITH FEDORA AND UPSTREAM.

Status Issue Source Package

Resolved Incorrect license enchant, kdesdk, wireshark

Upstream in sources

Resolved Incorrect license xen

Independantly in sources

Resolved Incorrect declared abrt

by Fedora license

Dynamic linking php

with GPL

Acknowledged Dynamic linking lvm2, pilot-link

by Fedora with GPL

Reported Incorrect license cups, isdn4k-utils

Upstream in sources

Reported Incorrect declared alsa-utils, bison, eclipse-cdt,

to Fedora license fetchmail, firstboot, iproute,

iptables, kdebindings, mtools,

ortp, rpcbind, vinagre, vino, yum

declared in the source code) and (ii) communicating with

the developers.

Threats to external validity concern the generalization

of our results. The study concerns a very large number

(2,399) of software packages belonging to the Fedora-12

GNU Linux distribution, developed by different authors,

having different licenses and depending on different sets

of other applications. However, further studies—e.g., on

other distributions like the Debian, using different package

format—would be desirable.

VIII. CONCLUSION

FOSS systems are distributed as packages—such as the

RedHat/Fedora RPM packages or the Debian .deb packages,

generated from source code distributed under a wide variety

of licenses, and requiring the installation of libraries or

components that, in turn, have other licenses. The large

set of existing licenses, the constraints they pose, and the

complex dependency relationships among packages deter-

mine a situation in which it is difficult to understand

under what conditions a package can be used and/or redis-

tributed. Although software distributions—eg GNU Linux

distributions—perform their own license auditing—this is

often insufficient.

This paper described a semi-automatic method to audit

licensing compatibility issues in software distributions, and

reports a study in which we audited Fedora-12 packages. The

study allowed us to show several licensing incompatibility

issues, concerning both the mismatch between declared li-

censes and those stated in the source code, and dependencies

between packages and libraries with different licenses. In

many cases we contacted the package developers or Fedora

people for clarification or to highlight potential problems—

which in several cases were real ones. Overall, from the

study we conducted, it can be learned that auditing licensing

issues is quite complex due to several reasons:

• Automatic auditing of source code is, in general, dif-

ficult. The solution is likely to be tools that assist

the experts who do it. Such tools guarantee that the



person doing the audit spends her time looking at the

most challenging issues first, without wasting time to

scrutinize cases where it is evident there cannot be

licensing problems.

• A correct license identification is crucial for the anal-

ysis. Even though Ninka was capable of identifying in

93% of the source code files, there are still cases where

automatic license identification is challenging.

• Many packages contain source code under different

licenses. This makes determining the license of the

entire package difficult. Package maintainers could help

simplify this problem, by splitting a source package

into multiple packages, each one distributed under a

different license, and making sure that the license of

a binary package is always the same as the one of its

source package.

• Licenses evolve over time. We found many cases in

which the license of a package changed, and this

created problems, e.g., the package still declared the old

license, or one of its callers was using an older license,

making the package use potentially incompatible.

• Packages interact in various ways, and it is not trivial to

determine if they violate the license of its dependencies

(callees).

It is important to emphasize that, even though our method

discovered many issues, we cannot claim it can find them

all. As described before, whether files (or packages) with

two licenses can coexist together depends if and how they

interconnect together. This is an area that requires ample

further work. Nonetheless, our study proved effective, as

we discovered several suspicious inconsistencies that we

reported to Fedora and to the upstream developers (the term

upstream refers to the developer community that develops

and maintains the product in the source package). The results

are summarized in Table X. Some of these issues have been

already resolved, while are others are still being evaluated.

In summary, the empirical study showed that a deeper

understanding of licensing issues requires human expertise

and might not be fully automatic. Nevertheless, future

work should be devoted to incorporate in auditing methods

and tools additional heuristics—many of them documented

herein—to reduce the amount of manual inspection needed.

Also, we aim at extending the proposed approach by (i)

using finer-grained dependency information between single

applications/components rather than at package level; and

(ii) keeping into account license changes as they can be

captured from versioning systems [5]. Last, but not least,

it is desirable to replicate the study on other GNU/Linux

distributions.

We also acknowledge the prompt responses from Fedora’s

licensing team and other individuals in the fedora-legal-list3

and from the package maintainers. They are truly committed

3https://www.redhat.com/mailman/listinfo/fedora-legal-list

to making sure any license inconsistencies are resolved.

ACKNOWLEDGEMENTS

We thank Tom ”Spot” Callaway and Richard Fontana

from Red Hat’s Legal team for their invaluable help in the

preparation of this manuscript. The work of D.M.German

has been funded by Hewlett-Packard to support the FOS-

Sology Project. The work of J. Davies has been funded by a

University of Victoria Undergraduate Research Scholarship.

REFERENCES

[1] D. M. Germán and A. E. Hassan, “License integration pat-
terns: Addressing license mismatches in component-based de-
velopment,” in 31st International Conference on Software En-
gineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,
Proceedings. IEEE, 2009, pp. 188–198.

[2] D. M. Germán, J. M. González-Barahona, and G. Robles,
“A model to understand the building and running inter-
dependencies of software,” in 14th Working Conference on
Reverse Engineering (WCRE 2007), 28-31 October 2007,
Vancouver, BC, Canada, 2007, pp. 140–149.

[3] D. M. German, M. Di Penta, Y.-G. Guéhéneuc, and G. An-
toniol, “Code siblings: Technical and legal implications,” in
Proc. of the 2009 Working Conference on Mining Software
Repositories, MSR 2009, 2009, pp. 81–90.

[4] A. Hindle, D. M. German, and R. Holt, “What do large
commits tell us? a taxonomical study of large commits,” in
MSR ’08: Proc. of the 2008 international working conference
on Mining software repositories, May 2008, pp. 99–108.

[5] M. Di Penta, D. M. German, Y.-G. Gueheneuc, and G. An-
toniol, “An exploratory study of the evolution of software
licensing,” in Proceedings of the ACM/IEEE 32rd Interna-
tional Conference on Software Engineering (ICSE 1010) 2-8
May 2010, Cape Town, South Africa, 2010.

[6] T. Tuunanen, J. Koskinen, and T. Kärkkäinen, “Automated
software license analysis,” Automated Software Eng., vol. 16,
no. 3-4, pp. 455–490, 2009.

[7] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi, “In-
tellectual property rights requirements for heterogeneously-
licensed systems,” Requirements Engineering, IEEE Interna-
tional Conference on, vol. 0, pp. 24–33, 2009.

[8] G. Robles, J. M. González-Barahona, M. Michlmayr, and
J. J. Amor, “Mining large software compilations over time:
another perspective of software evolution,” in Proc. of the
2006 International Workshop on Mining Software Reposito-
ries, MSR 2006, May 22-23, 2006. ACM, 2006, pp. 3–9.

[9] J. M. González-Barahona, G. Robles, M. Michlmayr, J. J.
Amor, and D. M. Germán, “Macro-level software evolution:
a case study of a large software compilation,” Empirical
Software Engineering, vol. 14, no. 3, pp. 262–285, 2009.

[10] L. Rosen, Open Source Licensing: Software Freedom and
Intellectual Property Law. Prentice Hall, 2004.

[11] D. M. German, Y. Manabe, and K. Inoue, “A sentence-
matching method for automatic license identification of
source code files,” Under review, available at http://
turingmachine/∼dmg/papers/, 2009.


