
Who are Source Code Contributors and How do they Change?

Massimiliano Di Penta
Dept of Engineering, University of Sannio

Benevento, Italy
dipenta@unisannio.it

Daniel M. German
Dept. of Computer Science, University of Victoria

Victoria, Canada
dmg@uvic.ca

Abstract—Determining who are the copyright owners of
a software system is important as they are the individuals
and organizations that license the software to its users, and
ultimately the legal entities that can enforce its licensing terms,
and change its license. In this paper we describe the difficulties
of identifying the explicit copyright owners of a system, and
those who contribute source code to it–who could potentially
claim are also copyright owners of it.

The paper introduces a method to track the names of
contributors, including those explicitly listed as copyright
owners from licensing statements in source code file. Then,
it reports an empirical study performed on four open source
systems—namely ArgoUML, Mozilla, Samba, and Squid—
aimed at investigating the characteristics of their contributors
and how they relate to the commits recorded in the system and
users who perform them (its committers).

Results indicate that explicit contributors and copyright
owners are not necessarily the most frequent committers. Also,
they are often added during larger changes than average.

Keywords-Mining software repositories; open source systems;
source code ownership; empirical study.

I. I NTRODUCTION

Intellectual Property (IP) clearance is becoming a ma-
jor problem for organizations wanting to reuse Free/Open
Source Software (FOSS). This problem has prompted an
industry dedicated to address it. For example, BlackDuck
http://www.blackducksoftware.com/offers a Software Intellec-
tual Property Assessment Serviceto businesses wanting to
reuse FOSS, either internally or in products they sell.

A major question in IP clearance is:who owns the source
code of a specific FOSS project?The answer to this question
has important consequences: only the owners of the source
code are capable of enforcing its licensing terms (i.e., suing
somebody for inappropriately using or reusing their source
code) and are the only ones capable of licensing it [1]. Any
organization or individual who is interested in incorporating
a FOSS or commercial product into their own project should
be aware of who its owner is, as it is only from the owner
that a license can be acquired, and only the owner can initiate
a copyright infringement lawsuit.

In the so-called proprietary software world (i.e., non-
FOSS) companies routinely negotiate software licensing
contracts with its owner. In contrast, in the FOSS world,
software is made available under one or more licenses by
its owners, and the recipient should accept such licensing

terms before reusing this software [2], [3] (see [4] for
a description of how licensing affects reuse of software).
Sometimes, however, the recipient is not willing (or cannot)
accept the terms of a license. For example, an organization
might want to include a library licensed under the General
Public License inside a program that is to be sold in binary
form only, but do not want to make its source code available.
In such cases, this organization has two (legal) choices:
either do not use the library, or negotiate a different license
with the owner of the library [5]. For example, anybody
wanting to reuse MySQL as part of a non-FOSS product
must negotiate a commercial license with its owner (Sun
Microsystems) [6].

The answer to the question “Who owns the source code
of a specific Free/Open Source Software (FOSS) project?”
is not simple. Is it the person (or persons) who mostly
contributed to a software project? Is it their employer? Is it
the person who authored the majority of the lines of code of
the system as of today? Is the person with the largest number
of commits? What if the system is a “fork” of another
project, developed by a different group of individuals? [1]To
the best of our knowledge, the existing software engineering
literature has not investigated this problem yet. Existing
works limit the analysis to versioning system committers
[7], [8], [9].

The contribution of this paper is two-fold. First, it pro-
poses a method to mine the owners of a software system.
Second, it reports an empirical study, performed on four
FOSS projects—ArgoUML, Mozilla, Samba, and Squid—
showing that ownership in FOSS is not a trivial issue, and
exploring how contributor names appear in source code files,
and in what context they are introduced.

This paper is organized as follows. After Section II
provides a short background discussion on software intel-
lectual property, Section III illustrates how contributors are
mentioned in source code files, while Section IV describes
our method to extract contributor-related information from
source code files. Section V describes the empirical study
we performed, which results are reported and discussed
in Section VI. Section VII discusses the related literature,
and, finally, Section VIII concludes the paper and outlines
directions for future work.



II. BACKGROUND

Almost everywhere in the world, software is protected by
copyright legislation [10]. While copyright laws vary from
country to country, they are based on common guidelines set
by the World Intellectual Property Organization (WIPO).

In general, any code fragment is protected by copyright
when it is created. Very often, a source code file owner is
its author; however when a developer is being employed by
an organization to create such code, such an organization
becomes its owner. In legal terms, the owner of the code is
the owner of its copyright. The copyright owner of source
code is the only one allowed to make copies of it, and to
create derivative works from it. The copyright owner can
transfer these rights to another party, and this is done using a
license. For instance, ifA is the copyright owner of codeC,
andB wants to include it as part of a productD, thenB must
obtain a license forC that allows it to use it insideD. FOSS
licenses are primarily designed (under certain conditions) to
permit reuse [3]. For example, ifA licensesC under the
terms of the General Public License version 3, thenB can
incorporateC insideD as long asD is licensed under the
terms of the General Public License version 2 too (one of
the main conditions imposed by the license).

From a legal point of view, copyright can be sold and
transferred like any other type of property. Some organi-
zations maintain strict ownership of their FOSS projects.
For example, the Free Software Foundation (FSF) requires
a transfer of ownership (i.e., a transfer of copyright) for any
contribution to Emacs (i.e., the author of the contribution
must sign a legal document transferring the copyright of
the contribution—or patch—to the FSF). The same is done
by Sun Microsystems—the current owner of MySQL, ac-
quired from its previous owner, MySQL AB, in 2008—who
requires that any contribution to MySQL should include a
copyright transfer of the contribution to Sun Microsystems
[11]. Even though both organizations have very different
goals (one is striving to make FOSS more widely available,
while the other is a commercial entity whose ultimate goal
is to create revenue for its stock holders) they both want
to be the unique owners of their products. In this way they
are both capable of suing anybody who is inappropriately
using it; Sun also offers commercial licenses to its database
system (regardless of the wishes of any of the contributors
who have transferred their copyright to them, and without
paying them any portion of the royalties1).

Most FOSS projects, however, do not have such policies,
and could have from one owner (projects developed by one
developer only) to literally hundreds (as in the case of the
Linux and the *BSD kernels). The copyright ownership in

1This is similar to the manner in which scientific conference proceeding
and journal publishers request a transfer of copyright fromthe author. In
this way, the publisher owns the copyright of the papers and can initiate
legal action against anybody illegally making copies of them. Otherwise,
the publisher would have to request each author to sue the infringer.

FOSS is made more ambiguous by the collaborative nature
of its software development process. Frequently products
are co-developed, over a long period, by many individuals,
some of them regular maintainers, and others who submit
sporadic patches (see [1] for an extensive analysis of the
issues surrounding IP ownership).

III. W HO ARE THE COPYRIGHT OWNERS OF AFOSS?

In FOSS projects, source code files are the basic unit being
licensed. As a consequence, each file usually contains the
licensing terms under which it is made available to others.
For example, the Free Software Foundation recommends
that each source code file should include, at its beginning,
a license notice, such as“This program is free software;
you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at
your option) any later version.”

FOSS proponents (such as the Debian Project, the Free
Software Foundation, and the Apache Foundation) and li-
censes (such as the BSD, the various GNU Licenses, the
Apache License) recommend that every source code file
contains a copyright ownership statement, that includes the
year of the copyright, and the name of the author(s) that
claim such copyright. Throughout this paper, we will refer
to this area of the file as itslicense statementand will usually
contain a description of the file, a copyright ownership
statement, and its licensing terms.

When a file is copied from one system to another, is
licensing statement is expected to be preserved (e.g., the
BSD license makes this a condition of granting a license).
In previous research we have observed that this is indeed
true [12]. We discovered that files have been copied from
FreeBSD to Linux and vice-versa, preserving their licensing
terms and copyright owners. FOSS developers appear con-
cerned with properly following the conditions of licenses,
and crediting copyright to its rightful owners.

The Debian Project, the publisher of the Debian Dis-
tribution (which is the basis of several other distributions
including Ubuntu) is another body that has helped, over the
years, to clarify the ownership of software. In order for a
software package to be included in the Debian distribution,it
is required to create a document that lists (among other facts)
its copyright owners, and any source–if applicable–from
where the package might have been derived [13]. This task is
usually done manually by Debian Maintainers. For example,
Figure III shows a message sent by a Debian Maintainer
to the Hugin2 developers mailing list. This message is
important for three reasons: first, it shows that Debian is
concerned that every file should have copyright authors;
second, that proper attribution should be given to the rightful
owners of a file; and third, that when a file is copied for

2hugin.sourceforge.net



another source, new owners can be added to it to reflect any
changes made from its original.

I am in the process of trying to prepare 0.8.0 for Debian
GNU/Linux I have started going over the copyright/license
headers. In src/celeste many files are missing copyright
information. Most of these are files imported with minimal
changes from Gabor API http://www.kung-foo.tv/gaborapi. php
or libsvm http://www.csie.ntu.edu.tw/˜cjlin/libsvm/.

The attached patch adds copyright and license statements
to these files.[1]

Please apply and update the headers (adding copyright
holders) if you make substantial changes.

thanks, cu andreas

[1] I have doublechecked with Gabor API’s upstream author
Adriaan Tijsseling that files like ContrastFilter.cpp
are Copyright (c) Adriaan Tijsseling and licensed under
GPLv2+, although the original headers just say:

Original Author: Yasunobu Honma
Modifications by: Adriaan Tijsseling (AGT)

Figure 1. Example of a message sent by a Debian maintainer asking
developers of the Hugin project to properly state the copyright of various
files.

Thus the question“who are the copyright owners of a
FOSS?”can be answered by extracting the copyright owners
of each of its files. While this appears to be a simple task,
it is made difficult for the following reasons (exemplified in
Figure 23):

1) Is an author or a contributor a copyright owner (or
co-owner) of a file? Some license statements explicitly
state the “original” owner and a list of further contrib-
utors, but do not indicate if the contributors have any
claim on the copyright of the system. Some license
statements explicitly indicate that the contributors are
the copyright owners. In other cases, the copyright
owners and the authors are different persons.

2) There is no standard way to indicate the name of copy-
right owners or contributors in open source. We have
found many variants, such as: full name (e.g., Christian
Gonźalez), first name only (e.g., Christian), a username
(e.g., chrisg), an email address (e.g., chris@corp.net).

3) Before parsing a file, it is not known how many
copyright owners or contributors are present in it, and
how each one of them is separated from the rest. We
have found several variants:
• Multiple owners or contributors are listed in the same

paragraph. In this case, there is no uniform char-
acter separating them. Comma, hyphen, semicolon,
and periods are commonly used to separate owners.
Unfortunately, what is a separator in one file might
be used with a different purpose in another.

3To provide a comprehensive set of examples, we also show cases for
projects that, due to space limitations, are not part of the empirical study
described in this paper.

• Each owner or contributor is listed in one or more
lines.

4) Each owner or contributor is listed along with his/her
contributions to the file, in something that looks more
like a Changelog than a list of contributors.

5) The same author might be referred to in differ-
ent ways. This could be the result of aliases (e.g.,
Chris, Christian), misspellings (e.g., Christina, Cris-
tian, Chrs), one of many of his/her email addresses
(e.g., Chris.Smight@gmail.com, chris@corp.net). Spe-
cial and accented characters are sometimes replaced
by non-accented (e.g., Gonzalezinstead ofGonźalez).
There exists a risk that the names of two persons could
be confused as a misspelling of the other.

6) The copyright statement might not be where the owners
are actually listed. For example, in Eclipse JDT, the
copyright year is usually followed by the string:“IBM
Corporation and others.”. Others are expected to be
listed at the end of the licensing statement, under the
Contributors:section. Mozilla does something similar:
“Portions created by the Initial Developer are Copy-
right (C) <year> the Initial Developer. All Rights
Reserved.”Another section of the license contains the
name of theInitial Developer, and a list of contributors
to the file. Apache HTTPd takes an ever more radical
approach, by stating that some owners are listed in a
file namedNOTICES.

As described above, license statements frequently distin-
guish between the original copyright owner of an artifact (in
this case a file) and its subsequent contributors. Accordingto
copyright law, all of them are co-owners of the file, but each
owns his/her own contribution as long as such contribution
is considered “copyrightable” (like many definitions in copy-
right law, it does not qualify what copyrightable means in
terms of an objective metric, but rather subjectively). Thus,
it is necessary to detect and extract both original authors,
and contributors of a file. To avoid confusion, and to clarify
our nomenclature, we will use the following terms in the
rest of this paper:

• Contributor: a person or organization whose name
appears either as initial author or contributor in the
license statement.

• Explicit Copyright Owner:a person or organization
whose name appears explicitly stated as a copy-
right owner by immediately following the “Copyright
<year>” string in a license statement.

• Committer: A person who commits code to the ver-
sion control system. One person might have more
than one committer id in the version control system.
This is common in Mozilla, where the committer id
reflects thecurrent email address of the developer;
when a developer changes email address, a new id is
created. For example,aaronleventhal%moonset.netand
aaronl%netscape.comcorrespond to the same person.



Apache HTTPd

/ * Licensed to the Apache Software Foundation (ASF)
under one or more

* contributor license agreements. See the NOTICE
file distributed with

* this work for additional information regarding
copyright ownership.
[...]

* Code originally by Rob McCool; much redone by
Robert S. Thau

* and the Apache Software Foundation.

Squid

* Copyright 1997 by Carnegie Mellon University
* All Rights Reserved

* Permission to use, copy, modify, and distribute
* this software and its documentation for any purpose
* and without fee is hereby granted,

[...]
*
* CMU DISCLAIMS ALL WARRANTIES WITH REGARD
* TO THIS SOFTWARE, INCLUDING

[...]

* Author: Ryan Troll <ryan+@andrew.cmu.edu>

Mozilla

* The Initial Developer of the Original Code is
Netscape Communications Corporation.

* Portions created by the Initial Developer
are Copyright (C) 2002

* the Initial Developer. All Rights Reserved.

*
* Contributor(s):

* Simon Fraser <smfr@smfr.org>
* Stuart Morgan <stuart.morgan@alumni.case.edu>

Eclipse JDT

* Copyright (c) 2000, 2009 IBM Corporation and others.
* All rights reserved. This program and the
[...]
* Contributors:
* IBM Corporation - initial API and implementation

* Tom Eicher <eclipse@tom.eicher.name> - [formatting]
Format Element’ in JavaDoc does also format method body -
https://bugs.eclipse.org/bugs/show_bug.cgi?id=23874 6
* Tom Eicher (Avaloq Evolution AG) - block
selection mode

Figure 2. Examples of copyright attributions as they exist in a source file in different projects. Lines that do not start with * are continuation of the
previous one.

The copyright owners of a file would be the explicit
copyright owners, plus the contributors to the file. Clearly,
there could be contributors that change a substantial portion
of the file just because of a bug fixing or of a refactoring. The
question whether these contributors should also be copyright
owners is still open and questionable. Thecopyright owners
of a systemwould be the union of the copyright owners of
each of its files. There are other copyright owners, such as
those that create artwork and manuals; in this paper we will
focus our attention to source code developers only.

IV. A METHOD TO DETERMINE WHEN CONTRIBUTORS

ARE ADDED TO A FILE

We have developed a method to a) extract and uniquely
identify contributors, b) determine when contributors are
added to or removed from a file, and c) whenever possible,
match contributors to version control committer ids. It
consists in five steps that we detail below. Step 1 aims at
extracting licensing statements from source code files. Step
2 aims at identifying contributor names within licensing
statements. Step 3 identifies different ways in which the
same contributor is listed. Step 4 maps contributor names
to committer ids from the version control logs. Finally, Step
5 compares the set of contributors for each file revision with
its previous one, identifying the contributors that have been
added or removed in that revision.
Step 1: Extracting licensing statements from source code
files. Usually a licensing statement is located in the first
blocks of comments of a file (where a block is a sequence
of consecutive comments). We created our own comment
extractor based on a comment-removal tool adapted to

export comments instead of removing them4. We found that,
usually, the licensing statement is the first block, but in rare
occasions is located in the second block of comments, or
span both first and second (e.g., because it is interleaved
with preprocessor directives). For this reason, we always
extracted the first two comment blocks.
Step 2: Extracting contributors. This is the core of our data
extraction process. Its goal is to mine contributor names into
the licensing statements extracted in the previous step. It, in
turn, consists of the following tasks:

1) Extract the contributors section from the licensing state-
ment. The main challenge faced in this step is that each
project uses a different format to credit its contributors,
and therefore, should be adapted accordingly. Mozilla,
as shown in Figure 2, adds at the end of its licensing
statement a section called“Contributor(s):” , which
ends with the string“Alternatively, the contents [...]”.
The steps followed to extract the contributors at each
revision are: as the area delimited from“Contribu-
tor(s):” until “Alternatively, the contents [...]”is found
or until the end of the licensing statement. ArgoUML
and Squid often mention the contributor names after the
keyword“@author” and“Author:” respectively. Last,
but not least, all four projects contain copyright state-
ments where copyright years and contributors are also
mentioned. Examples are“Copyright (C) Tim Potter
2000” (Samba), or“Copyright (C) 1999,2002 Henrik
Nordstrom<hno@squid-cache.org>” (Squid). Regular
expressions to match copyright statements were defined
after manually inspecting a sample of about 500 files

4Our comment extractor can be downloaded from turingmachine.org/
∼dmg/comments-1.0.tar.bz2



from the four projects. It is also important to mention
that, in some cases, a file contains both a copyright
belonging to an institution (e.g., many files of Squid are
copyrighted by the Carnegie Mellon University) and an
author listed using one of the criteria above mentioned.
In that case we considered both the institution and the
author as contributors.

2) Break each contributors section into sentences, remov-
ing unnecessary whitespace and commenting characters
from the input, saving the result into a file. We will call
this the set of contributors for the file revision.

3) Remove duplicates from the previous step.
4) Filter out unnecessary information (such as the expla-

nation of the contribution) and to make sure that only
one contributor was listed per each line.

For example, the following contributors section:

* Keith Visco, kvisco@ziplink.net

* -- original author.
*
* Nathan Pride, npride@wavo.com

* -- fixed document base when stylesheet is specified,
* it was defaulting to the XML document.

*
* Olivier Gerardin, ogerardin@vo.lu

* -- redirect non-data output (banner, errors) to stderr
* -- read XML from stdin when -i is omitted
* -- accept ’-’ to specify stdin/stdout on command line

was manually transformed to

Keith Visco <kvisco@ziplink.net>
Nathan Pride <npride@wavo.com>
Olivier Gerardin <ogerardin@vo.lu>

Step 3: Identify variants in names, spelling mistakes,
and unify contributor names. It often happens that, in
different files, the same contributor is listed in different
ways, for example, in Mozilla“Christopher A. Aillon” or
“Christopher Aillon” ; “IBM Corp” , “IBM Corporation” , or
“International Business Machines”; in other occasions there
can be spelling mistakes (“Blizzzard” instead of“Blizzard” ).
To deal with these inconsistencies, we build a thesaurus
of contributor names, where each contributor has a unique
identifier (possibly her full name), and other names are
treated as aliases. Where available, other information is
associated to the contributor,i.e., the email address and the
company who employed him/her. This process is performed
manually also.
Step 4: Match contributors to Concurrent Versions Sys-
tem (CVS)/SubVersioN (SVN) ids.We use a method that
is an extension of Bird’s algorithm to match email addresses
to committer ids [14]. For example, Mozilla uses as com-
mitter ids of its CVS repository the email addresses of the
individuals (replacing’@’ with ’%’ ). This means that one
person might have several CVS ids (for example, Aaron Lev-
entahl has the following ids:“aaronl%chorus.net”, “aaron-
leventhal%moonset.net”, and“aaronl%netscape.com”). We
assume that, if the string before the % is the same, then the
id belongs to the same person.

For the other systems we analyze the mapping was
relatively simpler, primarily because they had significantly
fewer CVS/SVN committers and contributors. In contrast
with Mozilla, in the other systems each contributor used
only one CVS/SVN id. Basically, two situations occurred:

• the contributor name matches the CVS/SVN id,e.g.,
in ArgoUML “aslo” or “euluis” are both contributor
names and SVN ids.

• the CVS/SVN id is a shortcut of the contributor name
(e.g., initials), and there is no ambiguity with other
contributors, e.g. in ArgoUML“Jeremy Jones” →
“jjones” , or in Samba“Andrew Barteltt” → “abart-
let” .

Step 5: Identifying when the set of contributors of a file
changes.The final step compares the set of contributors of
each file revision with the set of contributors of the previous
revision. The result is, for each file revision, the set of
contributors added and removed.

V. EMPIRICAL STUDY

The goal of this study is to analyze the set of source
code files contributors, as stated in licensing statements,
with the purposeof investigating how this set changes, and
whether such changes are related to two reasons: the amount
of code the contributor commits (when the owner is also a
committer), and the number of times that this person has
committed to such file. Thequality focusis related to the
ownership of source code files, and to how such ownership
changes. Theperspectiveis of researchers who want to
understand in what context do the ownership of a source
code file changes. The ownership of a file will affect whether
this file can change its license in the future. Thecontext
consists of the CVS or SVN repositories of four FOSS
systems: ArgoUML, Mozilla, Samba, and Squid. The four
systems have different sizes, were developed with different
programming languages (Java, C++, and C), and belong to
different domains: ArgoUML is a UML modeler; Mozilla is
a suite comprising a Web browser, an email client, and other
Internet utilities; Samba is a file and printer service inter-
operating between Unix and Windows operating systems;
and Squid is a Web proxy server. The version control used
in the projects we investigated is CVS, except for ArgoUML,
which uses SVN5. Table I reports the main characteristics
of the four systems.

A. Research questions

The empirical study aims at addressing the following
research questions:
RQ1: Who are the contributors of source code files?This
research question aims at mining contributors of each source
code file, at analyzing in how many files each contributor

5For Samba, we chose the time interval when it was still under CVS. It
later migrated to SVN and finally Git.



Table I
MAIN CHARACTERISTICS OF THE FOUR SYSTEMS.

Characteristic ArgoUML Mozilla Samba Squid

Language Java C/C++ C C
Release range 0.10–0.20 M3–1.7.13 1.9–3.0 1.0–3.0
#of source files range 777–1,421 4,845-12,436 299–860 21–876
KLOC range 129–280 1,827–4,104 156–332 13–180
CVS/SVN start date 2000-09-14 1998-03-28 1996-05-04 1996-02-22
CVS/SVN end date 2005-12-30 2008-01-11 2004-04-03 2008-03-03
Analyzed file revisions 32,582 468,747 29,018 6,359

is listed. It also investigates whether contributors are also
committers in the versioning system.
RQ2: How frequently do contributors change?This research
questions investigates the change of contributors in source
code files, specifically analyzing how frequently contributors
are added, and if sometimes contributors are removed from
a file licensing statement.
RQ3: When do contributors change?This research question
investigates whether people appearing as file contributors
have changed, on average, a number of source code lines
higher than other committers, and if there a relationship
between large changes and the addition of contributor names
to source code files.

B. Analysis method

To answerRQ1, first we analyze the percentage of files
that, during their lifetime, had at least one contributor
mentioned in the licensing statement, vs. the percentage of
files for which no contributor was ever mentioned. This to
understand to what extent source code files of a project
contain contributor information. Then, we investigate the
mapping existing between contributor names and CVS/SVN
committer ids,i.e., how many contributors are mapped to
committers, andvice versa. Finally, we analyze the distribu-
tion of contributors across source code files, by highlighting
contributors who appear on a larger number of files than
others.

To answerRQ2, we compute, for each file, the percentage
of commits that contain an addition or a removal of con-
tributors, and analyze the distribution of such percentages.
Since in this context we are mainly interested in changes in
the list of contributors, rather than on the presence of the
contributors themselves, we do not account for cases where
the addition occurs in the first file revision (i.e., 1.1), since
for that cases we consider that the contributor was always
mentioned in the file, until a further change occurred.

To answerRQ3, we look at various factors that could
be related to the addition of contributors into licensing
statements. In particular, we investigate:

• whether contributors are introduced in the context of
substantial changes occurring to source code files,
i.e., changes that, in terms of number of lines
added/removed, are larger than other changes. The
rationale here is to verify if a large change results

Table II
NUMBER OF FILES WITH AND WITHOUT CONTRIBUTORS.

System TOTAL With Without
contrib contrib

ArgoUML 4795 1390 (29%) 3405 (69%)
Mozilla 16763 3224 (19%) 13539 (81%)
Samba 1389 618 (44%) 771 (56%)
Squid 774 248 (32%) 627 (68%)

in adding contributors to the file. The comparison is
performed using (non-parametric) Mann-Whitney test,
and the magnitude of the difference is estimated using
the Cohend effect size [15], which is defined as the
difference of means divided by the pooled standard
deviation, and is considered small for0.2 ≤ d < 0.5,
medium for0.5 ≤ d < 0.8 and large ford ≥ 0.8.

• whether the contributors of a file performed, over the
file lifetime, an amount of changes (in terms of number
of commits or lines added/removed) larger than other
committers. The rationale is that we would expect that
those who contributed more to a file would be listed as
contributors. Here the comparison is performed using
a Wilcoxon test (which does a pairwise difference on
each file of the changes made by contributors and by
others), and the magnitude of the difference computed
using the Cohend effect size for dependent samples,
defined as average difference across samples (files in
our case), divided by the pooled standard deviation.

VI. RESULTS

This section reports and discusses results aimed at ad-
dressing research questions formulated in Section V-A. To
favor replication, raw data used for the analyses are available
for downloading6.

A. RQ1: Who are the contributors of source code files?

To get a first idea of how contributors appear in source
code files, we identify the number (and percentage) of source
code files for which at least one contribution was mentioned
in at least one revision of the source code file. Results are
reported in Table II. As it can be noticed from the table, in
the four analyzed projects the presence of contributor names

6http://www.rcost.unisannio.it/mdipenta/contrib-data.tgz



Table III
NUMBER OF CONTRIBUTORS(CT), COMMITTERS (CM ) AND THEIR

INTERSECTION AND DIFFERENCE.

System Ct Cm Ct ∩ Cm Ct − Cm Cm − Ct

ArgoUML 60 40 25 35 15
Mozilla 732 597 274 458 323
Samba 55 35 19 26 16
Squid 42 10 7 35 3

in source code files is not negligible, although the majority
of files do not contain contributor information. In particular,
the percentage is particularly low for Mozilla: (19%), despite
the well-defined format Mozilla has adopted for mentioning
contributors. On the other hand, almost every Mozilla file
cites the Mozilla Foundation or Netscape Corporation as
its initial author. Since we are interested to analyze how
contributors change, we do not include the original author
of Mozilla files in our study if it is the Mozilla Foundation
or Netscape Corporation.

Table III reports, for each system, (i) the overall number of
contributors (Ct), (ii) the overall number of committers to its
version control repository (Cm), (iii) the number of cases in
which a contributor was also a committer (Ct∩Cm), (iv) the
number of contributors that are not committers (Ct−Cm),
and (v) the number of committers that are never mentioned
as contributors (Cm − Ct). The table shows that:

• Mozilla has a very large number of contributors and
committers. As discussed in Section IV, for Mozilla
a contributor can appear in the CVS with different
identifiers. All the 597 committers of the files we
analyzed result mapped to 274 contributors (i.e., some
contributors correspond to more than one committer).

• Squid has 4 times more contributors than committers,
and 70% of the committers are listed as contributors of
at least one file. For Samba and ArgoUML, the number
of contributors is about 50% more than the number of
committers, and more than half of these committers are
listed as contributors to at least one file.

Table IV shows the number of files on which the most fre-
quent contributors for the four systems appear. We indicate
in boldface contributors that are also committers. As it can
be seen, with few exceptions, the most common contributors
are also committers. In addition, there is a large number
of files owned by organizations, in particular IBM Corp.,
Netscape Corp., and Carnegie Mellon University; this is
common for code owned by companies, where often the
company name appears in place of the author. It also reflects
that some contributors act on behalf of their employer.

B. RQ2: How frequently do contributors change?

In this research question we analyze to what extent
contributors change across file revisions. Figure 3 shows,
for files belonging to the four analyzed systems, boxplots
of frequencies of contributors additions. The analysis only

ArgoUML Mozilla Samba Squid

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

System

F
re

qu
en

cy
 o

f c
on

tr
ib

. a
dd

iti
on

Figure 3. Frequency of contributors addition.

includes the set of files for which at least one contributor
was found. The frequency is significantly different among
systems (p-value< 0.001), with median values of 4% for
Mozilla, 5% for Samba and Squid, and 8% for ArgoUML.
Mozilla is the only system for which we detected contributor
removals. It is also interesting to note that in Mozilla we
detected commits where contributors were removed. This
happened with a median frequency of 3%. Usually these
removals were “rollbacks” to previous file revisions, and
the these removed contributors would be latter added. We
presume that rollbacks were the result of defects in such
commits, and once the code was improved their contribution
was added again to the project, and their name to the list of
contributors.

C. RQ3: When do contributors change?

RQ3 aims at investigating in what context new contribu-
tors are added to source code files. In particular, we analyze
whether contributors are added in the context of larger
changes to a source code file. To this aim, we compare
the number of lines added/deleted—as extracted from the
versioning system—for commits when contributors were
added to files, with the same number for other commits
(such a number is normalized dividing it by the file size
at the time of the commit). Results are shown in Table V. It
can be noticed that contributors are added in the context of
commits that, on average, are significantly larger—and with
a medium/high effect size—than other commits, except for
ArgoUML, for which there is a significant difference in the
opposite direction, although with a negligible effect size.

Then, we investigate whether contributors are those com-
mitters who perform a larger amount of changes on source
code files. In other words, it could be expected that, after
a certain amount of changes, a committer deserves to add
his/her name to the source code file. To this aim, we
compared the number of lines added/removed to source
code files by committers that have been contributors at



Table IV
MAJOR CONTRIBUTORS IN TERMS OF NUMBER OF FILES THEY APPEAR ON(BOLDFACE HIGHLIGHTS WHO IS ALSO A COMMITTER).

ArgoUML Mozilla Samba Squid
Jaap Branderhorst (kataka) 443 Pierre Phaneuf 456 Andrew Tridgell 350 Robert Collins 128
Bob Tarling 154 IBM Corporation 139 Tim Potter 152 Carnegie Mellon University 26
Thierry Lach 150 Darin Fisher 130 Luke Kenneth Casson Leighton 128 Duane Wessels 16
Jason Robbins 101 Stuart Parmenter 93 Jeremy Allison 119 Harvest Derived 14
MVW 85 Brian Ryner 90 Andrew Bartlett 79 Guido Serassio 11
mkl 75 Keith Visco 86 Paul Ashton 57 Ryan Troll 11
alexb 53 Netscape Communications Corporation 85Jerald Carter 56 Francesco Chemolli 6
Curt Arnold 47 David Hyatt 78 Jim McDonough 51 Flavio Pescuma 5
Linus Tolke 44 Seth Spitzer 74 Simo Sorce 47 Henrik Nordstrom 5

Table V
AMOUNT OF CHANGES WHEN CONTRIBUTORS ARE ADDED VS. OTHER

COMMITS (VALUES ARE NORMALIZED WITH RESPECT TO THE FILE

LENGTH).

System Contr. added No contr. added Mann-Whitney Effect
Mean σ Mean σ p-value size

ArgoUML 0.11 0.19 0.15 4.63 0.01 −0.01
Mozilla 0.22 0.53 0.05 0.20 < 0.01 0.75
Samba 0.73 1.17 0.07 0.59 < 0.01 1.09
Squid 1.55 3.98 0.10 0.72 < 0.01 1.91

least for a period of the file lifetime, with the number of
lines added/removed by other committers (that were not
contributors to that file). Descriptive statistics, Wilcoxon
test p-values7, and the Cohend effect size, are reported in
Table VI. As the table shows, the results is significant in
the opposite direction,i.e., the amount of changes made by
non-contributors is significantly higher than the amount of
changes made by contributors. This means that important
contributors are not mentioned in source code files. Further
investigation is needed to understand why this does not
happen.

D. Threats to Validity

This section discusses the main threats to the validity of
our study.Construct validitythreats concern the relation be-
tween the treatment and the outcome. They can be due to our
measurements,i.e., in particular to the performance of the
heuristics we used to extract contributors from source code
files. Although our results are not affected by problems of
accuracy (as the list of extracted contributors was manually
scrutinized), the heuristic we used could have missed some
contributors. We limited this problem by carefully analyzing
several file headers of all the software systems, to determine
the heuristics and regular expressions for extracting contrib-
utor names. Another threat is related to the fact that, like
Gı̂rbaet al. [8], we measured the contribution of a committer
in terms of lines added/removed. We are aware that, in many
cases, simple code style improvements or formatting can
be seen as addition/removal of source code lines. In future

7As in this case the comparison is pairwise on each file, we do not need
to normalize the change dividing it by the file size.

work we plan to use more sophisticated differencing tools
(e.g., [16]) to better identify the changes being performed.

Threats tointernal validity do not affect this study, being
this an exploratory study. For the same reason, threats to
conclusion validityare also not important, although we used
statistical tests where appropriate and made sure that the
conditions for their applicability held.

Threats toexternal validityare related to the generaliz-
ability of our findings. Our study includes four open source
systems, developed in different programming languages,
belonging to different domains, and experiencing different
kinds of evolution,e.g., systems developed from scratch
(ArgoUML, Samba, and Squid), and another that originated
in industry (Mozilla). Yet, it is necessary to replicate this
study on other systems.

Regardingreliability validity, i.e., the possibility of repli-
cating this study, we have detailed the data extraction pro-
cess, and the source code and changes for the four systems
are available from their CVS/SVN repositories. Furthermore,
we make available the extracted data to ease the replication
of our analyses.

VII. R ELATED WORK

To the best of our knowledge, only few recent works
investigate the activity of developers in software projects
and, above all, how they are mentioned in various software
repositories.

The related work closest to ours is that of Robles and
González-Barahona [17], who outlined a process to get
identities from different sources (commits, mailing lists, bug
reports, source code), and to map them. With respect to
their work, we propose precise heuristics to (i) identify
contributors within source code files and to map them to
committers, and (ii) we report an empirical study across four
systems investigating various questions about the presence of
contributor names in source code files. German [7] studied
the activity of PostgreSQL committers. He discovered that a
large number of commits where authored by people without
commit access, and that one particular person was respon-
sible for committing such contributions. Hindleet al. [9]
discovered that many of the largest commits correspond to
changes to the licenses or copyright owners of files. This



Table VI
NUMBER OF SOURCE CODE LINES ADDED/REMOVED BY CONTRIBUTORS AND BY OTHER COMMITTERS.

System Contributors Other committers Mann-Whitney Effect
Mean Median σ Mean Median σ p-value size

ArgoUML 1.18 0.00 19.74 178.07 45.00 574.36 < 0.01 0.31
Mozilla 105.81 0.00 1400.16 795.92 74.00 8210.58 < 0.01 0.08
Samba 262.07 0.00 921.28 945.19 116.00 2374.06 < 0.01 0.33
Squid 12.47 0.00 88.32 283.07 12.00 2190.94 < 0.01 0.12

confirms what we quantitatively found in RQ3,i.e., new
contributors were added to files in the context of large
changes.

Other works were specifically related to social network
analysis of developers’ activities. Yu and Ramaswamy [18]
used clustering techniques on interactions among developers
to identify developers roles,i.e., classifying developers into
core and associatedevelopers, according to the strength
of their collaborations. Differently from our work, the
aforementioned works focus on committers rather than on
contributors appearing into source code files. Birdet al. [19],
[20] developed a method to unify email accounts coming
from mailing lists, where often the same developer tend to
used multiple accounts. Then, they performed social network
analyses from mailing lists coming from several open source
projects. They found that the network of collaboration was
in most cases modular when the collaboration was related
to specific software artifacts, and that the division of the
project in sub-communities reflected the technical content
of the discussion. Again, the previous studies focused on
committers or mailing list recipients; we believe that fur-
ther developer/contributor collaborations can be inferred by
exploiting contributors extracted from source code files.

Ownership was computed by Gı̂rbaet al. [8] as the
percentage of source code lines modified by a specific
author. They also pointed out the need for properly visualize
the ownership of a file, and defined a view namedOwnership
Map where changes to files were represented with circles
having a radius proportional to the change size and a color
representing the owner. We share with them the idea of
ownership measured in terms of amount of changed lines,
while we found that this do not imply (RQ3) having the
contributor mentioned in the file. Instead, results showed
that contributors were added in large changes.

Other works related to legal issues in open source projects
focus on licenses. Gobeille [21] developed FoSSology, a tool
to automatically classify open source licenses using a pattern
matching algorithm called the Binary Symbolic Alignment
Matrix (bSAM). FoSSology is capable of detecting 78
different license variants, classified in a hierarchy of licenses
(for example, there exist several kinds of Corporate licenses
belonging to different companies, as well as different ver-
sions of the GPL). Licenses impose constraints and thus
can be defined as logical formula constraining what can and
cannot be done with a system. Software licensing patterns

have been recently studied by Germanet al. [4] using
such a formalization of licenses. They introduced several
legal patterns, along with examples of occurrences of these
patterns. Finally Germanet al. [12] presented a study of the
influence of software licenses on code migration between
the FreeBSD, Linux, and OpenBSD kernels.

VIII. C ONCLUSIONS AND WORK-IN-PROGRESS

Source code file contributor names, together with licenses,
represent important software assets, as they influence the
way source code can be used. As the signature on a picture,
they indicate the intellectual property of the code. Also,
they can both represent people who are directly involved in
source code development—and thus they are mentioned as
authors are mentioned on a paper—or can represent people
who contributed indirectly and deserve credit, as it happens
for people acknowledged at the end of a paper. It is not
only interesting to monitor contributors to see how people
contribute to a software project, but also to make sure that
when the source code is cloned from a system to another [12]
ownership and credits are preserved. Also, contributor names
mined from source code files are an alternative to committer
ids to determine competent source code file developers
for the purpose of building triaging systems [22], and for
analyzing socio-technical aspects of software development
[20].

This paper proposed a method, based on both (semi)
automatic analysis of source code comments and on a man-
ual mapping to committer identifiers, to extract contributor
names from source code files and map them to committers.
Then, it reports an exploratory study aimed at analyzing
the presence and the evolution of contributor names in the
source code of four open source projects, namely ArgoUML,
Mozilla, Samba, and Squid. Results indicate that:

• Matching contributors to committer ids is not trivial.
For example, in Mozilla many individuals have more
than one committer id; in some cases, the committer
id had little resemblance to the name of the committer
(such as Samba contributorJaap Branderhorst, who has
CVS id kataka, which has no resemblance to his email
address id jaap.branderhorst).

• On average, less than one third of the source code files
mention, in at least one revision, their contributors; in
some cases, organizations tend to be mentioned instead
of people (e.g., corporations such as IBM, Netscape, or



universities such as Carnegie Mellon University),
• The analyzed software projects have many more con-

tributors than committers, although almost all commit-
ters are also mentioned as contributors (while not all
contributors are committers).

• Contributors tend to be changed in less than 10 percent
of the file revisions.

• While contributors that appear on a large number
of files are also committers, the amount of changes
performed by contributors is not higher than that of
other committers. This indicates that some important
committers are not mentioned as contributors in source
code files.

• The addition of a new contributor occurs in the context
of changes significantly larger than others,i.e., a large
change tend to be recognized by the name mentioned
in the file.

Work-in-progress is complementing this activity of ana-
lyzing contributors, with analyses related to introduction and
change of licenses in source code files, to see to what extent
a source code file, during its lifetime, (i) changes the list of
contributors, (ii) gets the copyright years updated, and (iii)
moves from a license (e.g., BSD) to another (e.g., GPL), or
gets its license updated.

REFERENCES

[1] T. Golder and A. Mayer, “Whose IP is it anyway?”Journal
of Intellectual Property Law & Practice, vol. 4, no. 3, pp.
165–175, 2009.

[2] A. M. S. Laurent, ”Understanding Open Source and Free
Software Licensing”. O’Reilly, 2004.

[3] L. Rosen, Open Source Licensing: Software Freedom and
Intellectual Property Law. Prentice Hall, 2004.

[4] D. M. Germán and A. E. Hassan, “License integration pat-
terns: Addressing license mismatches in component-based de-
velopment,” in31st International Conference on Software En-
gineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,
Proceedings. IEEE, 2009, pp. 188–198.

[5] Free Software Foundation, “Frequently Asked Questions
about the GNU Licenses,” http://www.fsf.org/licensing/
licenses/gpl-faq.html, accessed Feb. 2009.

[6] M. Vlimki, “Dual Licensing in Open Source Software Indus-
try,” Systemes d Information et Management, vol. 8, no. 1,
pp. 63–75, 2004.

[7] D. M. Germán, “A study of the contributors of PostgreSQL,”
in Proceedings of the 2006 International Workshop on Mining
Software Repositories, MSR 2006, Shanghai, China, May 22-
23, 2006. ACM, 2006, pp. 163–164.

[8] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse, “How
developers drive software evolution,” in8th International
Workshop on Principles of Software Evolution (IWPSE 2005),
5-7 September 2005, Lisbon, Portugal. IEEE Computer
Society, 2005, pp. 113–122.

[9] A. Hindle, D. M. German, and R. Holt, “What do large
commits tell us? a taxonomical study of large commits,”
in MSR ’08: Proceedings of the 2008 international working
conference on Mining software repositories, May 2008, pp.
99–108.

[10] World International Property Organization, “CRNR/DC/94
WIPO Copyright Title,” Dec 1996.

[11] MySQL AB, “MySQL Contributor License Agreement
v0.3,” http://forge.mysql.com/contribute/cla.php, accessed
Sept. 2008.

[12] D. M. German, M. Di Penta, Y.-G. Guéhéneuc, and G. An-
toniol, “Code siblings: Technical and legal implications,” in
Proc. of the 2009 Working Conference on Mining Software
Repositories, MSR 2009, 2009.

[13] I. Jackson and C. Schwarz, “Debian Policy Manual,” 1998,
http://www.debian.org/doc/debian-policy/.

[14] C. Bird, A. Gourley, P. T. Devanbu, M. Gertz, and A. Swami-
nathan, “Mining email social networks in Postgres,” inPro-
ceedings of the 2006 International Workshop on Mining
Software Repositories, MSR 2006, Shanghai, China, May 22-
23, 2006. ACM, 2006, pp. 185–186.

[15] J. Cohen,Statistical power analysis for the behavioral sci-
ences (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Asso-
ciates, 1988.

[16] G. Canfora, L. Cerulo, and M. Di Penta, “Tracking your
changes: a language-independent approach,”IEEE Software,
vol. 27, no. 1, pp. 50–57, 2009.

[17] G. Robles and J. M. González-Barahona, “Developer identi-
fication methods for integrated data from various sources,”in
Proceedings of the 2005 International Workshop on Mining
Software Repositories, MSR 2005, Saint Louis, Missouri,
USA, May 17, 2005. ACM, 2005.

[18] L. Yu and S. Ramaswamy, “Mining CVS repositories to
understand open-source project developer roles,” inFourth In-
ternational Workshop on Mining Software Repositories, MSR
2007, Minneapolis, MN, USA, May 19-20, 2007, Proceedings.
IEEE Computer Society, 2007, p. 8.

[19] C. Bird, A. Gourley, P. T. Devanbu, M. Gertz, and A. Swami-
nathan, “Mining email social networks,” inProceedings of the
2006 International Workshop on Mining Software Reposito-
ries, MSR 2006, Shanghai, China, May 22-23, 2006. ACM,
2006, pp. 137–143.

[20] C. Bird, D. S. Pattison, R. M. D’Souza, V. Filkov, and P. T.
Devanbu, “Latent social structure in open source projects,”
in Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2008,
Atlanta, Georgia, USA, November 9-14, 2008, pp. 24–35.

[21] R. Gobeille, “The FOSSology project,” inIn Proc. Fith
International Workshop on Mining Software Repositories,
2008, pp. 47–50.

[22] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in 28th International Conference on Software Engi-
neering (ICSE 2006), Shanghai, China, May 20-28, 2006.
ACM, 2006, pp. 361–370.


