
An empirical study of the reuse of software
licensed under the GNU General Public License

Daniel M. German and Jesús M. González-Barahona

Abstract Software licensing is a complex issue in free and open source software
(FOSS), specially when it involves the redistribution of derived works. The creation
of derivative works created from components with different FOSS licenses poses
complex challenges, particularly when one of the components is licensed under the
terms of one of the versions of the GNU General Public License (GPL). This pa-
per describes an empirical study of the manner in which GPLed licensed software
is combined with components under different FOSS licenses. We have discovered
that FOSS software developers have found interesting methods to create derivative
works with GPLed software that legally circumvent the apparent restrictions of the
GPL. In this paper we document these methods and show that FOSS licenses interact
in complex and unexpected ways. In most of these cases the goal of the developers
(both licensors and licensees) is to further increase the commons of FOSS.

1 Introduction

Most software today is too complex to be created from scratch. One of the most
interesting aspects of free and open source software (FOSS) is the possibility of
reusing, without a fee, third party products to produce new ones. From a legal point
of view, those new products are derivative (also called derived) works from each of
their third-parties components, and their creation and redistribution is restricted by
copyright law. FOSS licenses have been created to foster derivative works. Clause
3 of the Open Source Definition states that a open source license should allow the
creation and distribution of derived works and their further distribution under the

Daniel M. German
University of Victoria, Canada, e-mail: dmg@uvic.ca

Jesús M. González-Barahona
Universidad Rey Juan Carlos, Spain, e-mail: jgb@computer.org

1



2 Daniel M. German and Jesús M. González-Barahona

same license as the original software [25]. Freedom 3 of the The Free Software
Definition [3] also grants a similar right: “The freedom to improve the program”.

By definition, any FOSS allows the creation of other works based upon the soft-
ware. Unfortunately it is not always possible to redistribute the resulting software
under same license under which each component is made available, hindering the
ability of a developer to reuse such component.

FOSS is a healthy software ecology where thousands of different software prod-
ucts interact among themselves to satisfy the user requirements. For example, the
Debian 4.0 Linux-based system is composed of more than 18,000 different instal-
lable software packages [21] (a software package, in FOSS distributions, corre-
sponds to independent and identifiable software that can be installed in a system
and satisfies a particular set of requirements; they range from end-user applications,
such as OpenOffice, to highly specialized libraries, such as libtiff, or libjpeg). FOSS
packages tend to reuse many different other software packages. We can therefore see
each software package as a component. A FOSS application is typically a collec-
tion of components that interact among themselves (even if this is not immediately
obvious to the user).

Such complex interrelations demonstrate an important feature of FOSS systems:
that FOSS is commonly created by reusing other FOSS1. As FOSS continues to
evolve, the number of FOSS applications, and the median number of packages re-
quired by each, keeps increasing—see [21] for a discussion of this phenomenon.

There is, however, an important challenge that needs to be addressed before a
software application can reuse the desired component: licensing terms. Anybody
interested in reusing a FOSS (we will use the term integrator to describe such in-
dividual; integrators might want to create FOSS or proprietary software) should be
aware and understand the licensing terms of such component, and how these terms
affect if (and how) the component can be used, particularly when components of
different licenses are used.

Licenses are restrictions on the way software can be used and combined. The
number of FOSS licenses keeps growing. At our last count there were 70 FOSS
licenses approved by the Open Source Initiative (OSI) and many more in use that
are been approved. This has lead to the problem known as License Proliferation [2].

Some of the most important FOSS licenses are the three versions of the GNU
General Public License (GPL). It is widely accepted that any software that incorpo-
rates GPLed licensed software (or simply GPLed software) should also be licensed
under the GPL (this is the basis for the notion of Copyleft, see [24]).

While investigating the relationships between different packages in software dis-
tributions [11, 10, 21] we observed that GPLed software is being used as a required
components in applications that are not released under the GPL. For example, any
PHP program that connects to a MySQL database requires to use the PHP run-time
engine and the MySQL Client Library. The PHP run-time engine uses the MySQL
Client Library via linking (either dynamic or static). PHP is licensed under the PHP
License 3.0 and the MySQL Client library under the GPL version 2.0 (GPLv2), in

1 In Debian 4.0 there are only a handful of packages that do not require any other package.



A study of the reuse of software licensed under the GNU GPL 3

apparent contradiction to the conditions of the GPL, which state that, any program
linking to a GPLv2 licensed library should be licensed under the GPLv2 also. In
other words, if the PHP run-time engine links to the MySQL Client Library, it can
only be licensed under the GPLv2. These observations prompted our main research
question: how is GPLed software interacting with software from other licenses?

In this paper we studied 124 FOSS packages—45 were licensed under the terms
of the GPL—and how the GPLed packages interacted with non-GPLed ones.

Our results highlight three major results: first, an important concern of the de-
velopers of GPLed on having their software used by other FOSS, even under other
FOSS licenses; second, the creative manners that some developers use to allow the
integration of GPLed components into their products without violating the terms of
the license; and third, the strong protections that the GPL offers to some companies
who have chosen to release their software under the GPL.

This paper is divided as follows. Section 2 describes the legal issues surround-
ing FOSS licensing and derivative works. Section 3 describes the different versions
of the GNU Public License and how it interacts with other FOSS licenses in the
creation of derivative works. We continue in Section 4 with a description of our
methodology and data used for the elaboration of this paper. Section 5 summarizes
our main results. We end with conclusions and future work.

2 Derivative works and licensing

Copyright law grants the copyright owner of a software product exclusive rights
on most aspects related to its modification, distribution and exploitation. Using a
license, the copyright owner can also grant specific permissions to third parties to
modify, distribute, and in general exploit the software (see [1, 12, 13, 18] for com-
prehensive discussions on how copyright protects software).

An important exclusive right that can be licensed is the creation and redistribution
of derivative works (also known as derived works). In the United States of Amer-
ica, derivative works are defined as “a work based upon one or more preexisting
works [...] in which a work may be recast, transformed, or adapted” [27]. Similar
definitions can be found in other jurisdictions.

When combining FOSS components with different licenses the concept of li-
cense compatibility arises. Assume two components A and B are combined in the
creation of a product C (C is a derivative work of both A and B). If it is possible to
satisfy in the license of product C—simultaneously—the conditions imposed by the
license of A and the conditions imposed by the license of B, then the license of A is
said to be compatible with the license of B (and vice-versa). In other words, a prod-
uct which is the result of integrating some components, and can be considered as a
derived work of them, can be redistributed only if the licenses of such components
are compatible. Some licenses (including the GPL) require that the license of the
derivative work be the same as the license of the component.



4 Daniel M. German and Jesús M. González-Barahona

For example, as we previously described, the PHP run-time engine reuses the
MySQL Connect Library. The PHP run-time is created by combining several com-
ponents, such as the PHP interpreter, which is licensed under the PHP License 3,
and the MySQL Connect Library, which is licensed under the GPL version 2. The
license of the PHP run-time should therefore be compatible with the terms of each
of its components (in this case the PHP License 3 and the GPL version 2). If the
license of the run-time is PHP License 3 then it satisfies the condition of its inter-
preter license (also PHP License 3), but it does not satisfy the conditions of the GPL
version 2 (that the derivative work should be also GPL version 2). Therefore we can
say that the PHP License 3 is not compatible with the terms of the GPL version 2
(and vice-versa). We will later discuss how this incompatibility is addressed by the
copyright owners of the MySQL Connect library.

A complementary example is Apple’s Safari Web browser that is licensed under
a proprietary license. It contains several components under various FOSS licenses,
such as the GNU Library General Public License version 2 and the new BSD li-
cense2. In this case the license of Safari satisfies the conditions of all the licenses it
uses, hence the GNU Library General Public License version 2 is compatible with
the new BSD license (and vice-versa).

The designer of a new product must determine, in advance, not only if the li-
censes of the components are compatible, but also if they are compatible with the
desired licensing terms of the new product. In the proprietary world this is usually
an issue of negotiating the licensing terms of each component with its copyright
owner. When the component is FOSS this is not easy: frequently an open source
component is only available under one license.

To complicate the issue further, depending on how components are mixed, the
resulting software can be considered a derivative work or not. For instance, if two
programs communicate through sockets or using exec/fork execution, the resulting
system is usually not considered to be a derivative work of them. In the other end of
the spectrum, if two components are mixed as source code, and compiled together,
the resulting software is clearly considered a derivative work[14]. In other scenarios
between these two extremes, the situation is less clear, and may have to be settled
in court. Rosen considers the question “what is a derivative work of software?” the
most difficult legal question facing the FOSS community[22].

To simplify our discussion, for the rest of this paper we will assume that a soft-
ware system is the derivative work of the components it uses.

3 The GNU General Public License family of licenses

The Free Software Foundation has authored several licenses and can be grouped into
three different families: the GNU General Public License (GPL), the GNU Lesser

2 The original BSD license contains four clauses; one of them, known as the “advertising” clause
has been dropped, resulting in what is known as the new BSD license, also known as 3-clauses
BSD.



A study of the reuse of software licensed under the GNU GPL 5

General Public License (LGPL, and previously known as the GNU Library General
Public License) and the GNU Affero General Public License (AGPL), as shown in
table 1.

Family of Licenses Released
1989 1991 1999 2007

GNU General Public License (GPL) Version 1 Version 2 Version 3
GNU Lesser General Public License (LPGL) Version 2 Version 2.1 Version 3
GNU Affero Public License (AGPL) Version 3

Table 1 The families of GNU licenses for software. There was no version 1 of the LGPL. Version
2 of the LGPL was known as the Library General Public License, but it was renamed to Lesser
General Public License in version 2.1. There were no versions 1 or 2 of the GNU Affero Gen-
eral Public License, but there exist version 1 and 2 of the Affero Public License, which were not
authored by the Free Software Foundation but are considered as predecessors of the AGPL.

In this paper we have concentrated on the GNU General Public License family,
which comprises three licenses (see Table 2): the original GNU GPL (GPL ver-
sion 1 [4] or GPLv1, published in 1989), version 2 (GPLv2 [5], published in 1991),
and version 3 (GPLv3 [6], published in 2007). All of them have similar goals, and
each one is derived from its predecessors. However, each license in this family has
its own sets of definitions, grants and conditions. From a legal point of view each
version is independent of each other, and their effects are different.

Version Date Description
1 Jan 1989 First copyleft license
2 June 1991 Adds ’liberty-or-death’ clause: if a user is prevented from satisfying the

terms of the license, then she cannot distribute the software
3 June 2007 Clarifies legal definitions, addresses patents, license proliferation, and

hardwared-based restrictions

Table 2 The three versions of the GNU General Public License.

Only the GPLv2 and GPLv3 have been approved by the Open Source Initiative as
open source licenses[20]. The Free Software Foundation considers the GPLv1 and
GPLv2 as deprecated, and recommends licensing under the GPLv3. Nonetheless, a
large amount of software is still licensed under GPL v2. On the other hand, software
released under GPL v1 is rare.

With respect to derivative works, one of the most important characteristics of
GPL licenses is their reciprocity: they allow the redistribution of derivative works
of a GPL-licensed software if and only if the derivative work is distributed under the
same GPL license. In particular, if a component is licensed under a version of the
GPL, then any of its derivative works should also be licensed under the same version
of the GPL. Therefore, license compatibility of the GPL can be stated as: a given
license L is compatible with a version of the GPL v if a derivative work of two com-



6 Daniel M. German and Jesús M. González-Barahona

License GPLv1 GPLv2 GPLv3

GPLv1 Yes
GPLv2 Yes
GPLv3 Yes
X11/MIT Yes Yes Yes
Old BSD (4 clauses)
New BSD (3 clauses) Yes Yes Yes
Apache v1
Apache v1.1
Apache v2 Yes
Artistic v1.0
Artistic v2.0 Yes Yes Yes
Common Public v1
Eclipse Public v1.0
Mozilla Public v1
Mozilla Public v1.1

Table 3 Compatibility of several FOSS licences with the GPL versions. Empty intersections cor-
respond to No compatibility. Note that the any GPL version is not compatible with other versions
(table based on information provided by the FSF [7]).

ponents, one distributed under L, and the other under v can be redistributed under v.
Table 3 shows some of the most widely used FOSS licenses and their compatibility
with the versions of the GPL.

4 Data and Methodology

For this paper our goal was to study how the licenses of different packages are
combined in the creation of more complex software packages. Package management
systems, such as apt, yum and fink simplify the installation of FOSS; when a
user wants a package installed, dependencies are analyzed and the packaging system
determines what packages are required, and installs them if necessary.

These packaging systems maintain dependency information for a large number
of FOSS. For example, Debian 4.0 contains over 18,000 different packages, and
Debian developers maintain the dependency trees of each of them. We selected 8
widely known applications (Apache httpd 2.2, GIMP 2.0, MySQL 5.0.38, KOffice
1.6.3, GNOME Desktop 2.14.0, GCC 4.3.2, PostgreSQL 8.2.4, and Bugzilla 3.0.2)
and expanded their dependency trees. The union of these 8 dependency trees re-
sulted in 124 different software packages (for a detailed description of how these
trees are computed see [11]). We downloaded the source code of each of these pack-
ages and manually inspected their licensing terms. Determining the licensing terms
of a package could be expected to be a straightforward task, but we found this not
to be the case. Sometimes the licensing terms are clearly stated, but sometimes they
are not obvious. Another complication is that in some cases the licensing terms are
not simple. For example, the licensing terms of netpbm is a file that lists every



A study of the reuse of software licensed under the GNU GPL 7

single source code file and its corresponding license. In other cases different parts
of a package are licensed under different licenses; for example, the run-time library
of the GCC compiler is “LGPLv3 or a any newer version” (we denote this type of li-
censing with a ’+’ symbol after the version number, LGPLv3+) while the rest of the
compiler is GPLv3+. In other cases the software is available under more than one
license, being the licensee the one who chooses which one applies. For example,
Firefox is licensed under the terms of the Mozilla Public License version 1.1, the
GPL v2+ and the LGPL v2.1+.

We found that 45 packages (36 percent of all inspected packages) were GPLed,
while many others were LGPLed. Table 4 shows the number of packages that use
each of the GNU licenses. We show these numbers for information purposes only.
These results should not be considered an estimation of the frequency with which
each license is being used in FOSS, that was not the purpose of our methodology.

GNU License Version Freq.
General Public License (GPL) 1+ 1

2 12
2+ 31
3+ 1

Library General Public License (LGPL) 2 4
2+ 37

Lesser General Public License (LGPL) 2.1 4
2.1+ 11
3+ 1

Table 4 Number of packages using the GNU Licenses (out of the 124 studied packages). The first
column lists the number of packages using it. A + after a version number of a license means that
the licensor allows the licensee to choose a newer version of the license. Some packages were
licensed under the terms of two or more licenses.

With the licensing information we could determine if the licenses of a pack-
age and those it directly requires were incompatible. For example, Bugzilla is
licensed under the Mozilla Public License v1.1, yet it requires MySQL, released
under the terms of the GPLv2. We assumed that the use of such package was ac-
cording to the terms of its license (i.e. that Bugzilla uses MySQL following the
terms of the GPLv2). For these cases we tried to determine if one package was con-
sidered a derivative work of the other. If it appeared to be, we tried to understand
and document the rationale that allowed such use (in apparent contradiction to the
terms of the GPL). We inspected their documentation, Web sites and, in some cases,
emailed their authors for further clarification. We documented these cases, which
are presented in the rest of this paper.



8 Daniel M. German and Jesús M. González-Barahona

5 Reusing GPLed software

In this section we present a survey of methods used by licensors and licensees of
GPLed software to allow the creation of works with components under different,
and potentially incompatible licenses. We organize these methods based according
to their goals, and exemplify their use. Table 5 offers a summary of all of them.

Method Examples

Making it “compatible” MySQL Client library, QT
Dual or multi licensing Perl, Mozilla, Firefox, Thunderbird
Relicensing under newer versions Many packages
“Licensed as” Perl modules
Clarification of terms Linux, Perl
Linking to non-compatible licenses OpenSSL, Sun’s Java JDK

Table 5 Methods used when releasing software packages that include components under GPL
licenses and some others under licenses apparently incompatible with them.

5.1 Making the GPL “compatible” with other FOSS licenses

Sometimes the copyright owner of a library wants to maintaing it licensed under the
GPL. But at the same time, she wants to allow the library to be linked by software
under other FOSS licenses, including those incompatible with the GPL.

5.1.1 Example: MySQL Client libraries

MySQL AB originally licensed the MySQL Client libraries under the terms of the
LGPLv2. The LGPL allows the creation and distribution of software under any li-
cense to link to the library (subject to some conditions). In 2004 MySQL AB de-
cided to release new versions of the libraries under the GPLv2 instead. Suddenly,
many applications under licenses not compatible with the GPL were not allowed to
link to them any more (for example PHP-based applications).

MySQL AB realized that they wanted to continue allowing some of these appli-
cations to link to the library but did not want to release the libraries under several
FOSS licenses. MySQL AB addressed this problem by issuing the “MySQL FLOSS
License Exception” [15]. The company explains its rationale as follows [16]:

We want specified Free/Libre and Open Source Software (“FLOSS”) applications to be able
to use specified GPL-licensed MySQL client libraries (the “Program”) despite the fact that
not all FLOSS licenses are compatible with version 2 of the GNU General Public License
(the “GPL”).



A study of the reuse of software licensed under the GNU GPL 9

The exception is an addendum to the GPLv2, and places two main conditions
on creating derivative works that link to the library and are not released under the
GPLv2, which can be summarized as follows:

1. If the library is modified, then such changes should be released under the GPL;
2. the rest of the derivative work is released under one of 24 different licenses listed

in the exception (which includes the BSD, MIT, Mozilla Public v1.0 and v1.1,
Apple Public Source v2, PHP, Python Software Foundation v2.1.1, LGPLv2, and
v2.1, and the Apache v1.0, v1.1, and v2.0).

5.1.2 Example: Qt

Qt is a cross-platform GUI library. In Sept 2000 Trolltech decided to release new
versions of it under the GPLv2. Unfortunately, this made Qt incompatible with more
permissive licenses, such as the LGPL (some LPGLed software was already linking
to Qt). To solve this problem, Trolltech issued an exception to the GPLv2, known as
the Nokia Corporation Qt GPL Exception Version 1.3 [19] (Nokia bought Trolltech
in 2008 and changed the name of the exception from Trolltech Qt GPL Exception).
It states the following conditions:

1. Software under one of the listed licenses can link to the library;
2. A commercial application can link to a pre-installed version of the library if it was

developed “in accordance with the terms and conditions of the Qt Commercial
License Agreement.”

This exception lists 31 licenses (compared to 24 of the MySQL exception). The
addition of the LGPLv3 and the Eclipse Public v1.0 are the most significant differ-
ences. In January of 2009 Nokia changed the license of QT to LGPLv2.1, making
this exception unnecessary.

The MySQL AB FLOSS License Exception and the Nokia Corporation Qt GPL
Exception have very similar objectives, yet they are drafted in very different terms.
Nokia’s exception permits linking with components under certain licenses, while
MySQL’s defines what constitutes a derivative work and issues exceptions for some
FOSS licenses.

5.2 Letting the licensee choose: dual and multi licensing

The concept of dual, and more generally speaking, multi-licensing (the term dis-
junctive licenses is also used). refers to the method of licensing in which the licen-
sor gives a choice to the licensee to select from two or more licenses. It has been
usually associated with a business model in which a company makes the software
available under a FOSS license, and a commercial license (see [28] for a discussion
of this licensing method and its benefits). Multi-licensing has also become a method
to address license incompatibility.



10 Daniel M. German and Jesús M. González-Barahona

5.2.1 Example: Perl

The licensing terms of Perl allow the recipient of the software to choose the license
under which to modify and redistribute the software. The choice is between GPL v1
or later and the original Artistic License (incompatible with the GPL).

5.2.2 Example: Mozilla, Firefox, and Thunderbird

The Mozilla Foundation makes Mozilla, Firefox and Thunderbird avail-
able under three different licenses: the Mozilla Public License (MPL) version 1.1,
the GPLv2 or later, or the LGPL v2.1 or later, at the choice of the licensee.

5.3 Relicensing under “any newer version”

As shown in table 4, many licensors of GPLed software give the opportunity to the
licensee to choose among a GPL license or “any newer version of the license”. Many
FOSS packages use this method of licensing. In fact, this practice is recommended
by the Free Software Foundation, and used in all GNU software. The main rationale
for it is to automatically adapt to future versions of the GPL (as it happened when
the GPL v3 was released in 2007).

5.3.1 Example: Perl

Perl allows its licensee to use the GPL v1 or any newer version of the license. It
follows the practice that the Free Software Foundation recommends in the Appendix
of the GPL itself, which explains that the following text should be added at the
beginning of all source code files of a software package:

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
1, or (at your option) any later version.

The use of such wording implies that the licensor is giving the option to the li-
censee to choose another license (the newer version). The rationale given by the
Free Software Foundation is that “makes it possible for us to change the distribution
terms on the entire collection of GNU software, when we update the GPL” [8]. The
most clear advantage is that the licensee does not have to worry about tracking up-
dates to the GPL, and does not have to worry about relicensing the software package
under every new version of the GPL3.

From a legal point of view this appears to be no different from multi-licensing
except that the newer license might not be yet written at the time the software is

3 When multiple authors are involved, relicensing might be difficult, or even impossible.



A study of the reuse of software licensed under the GNU GPL 11

initially released. This method of licensing requires trust in the Free Software Foun-
dation who is responsible for drafting the new versions of the GPL, as the new
versions could be more or less restrictive than the current one.

5.4 “Licensed as ... ” to allow relicensing

Sometimes software is licensed indirectly, by stating that its license is the same as
another one (and not stating a license explicitly). In this case one component ex-
plicitly states its license and the rest indicate they are licensed in the same way as
such component. If such component changes its license, all the other components
immediately change license4. This simplifies the licensing (and potential future re-
licensing) of components that are likely to interact between themselves.

5.4.1 Example: Perl modules

The Perl modules libtemplate, libmailtools, libmime-tools-perl,
and many others, are licensed as:

This module is free software; you can redistribute it and/or modify it under the same terms
as Perl itself.

In other words, the copyright owners of each of these packages have given the
copyright owners of Perl (the Perl Foundation5) the ability to choose the license of
such packages. This method of licensing simplifies the distribution of these modules
along Perl now and in the future.

5.5 Clarifying the terms

Licenses are legal documents, and despite trying to be as precise as possible, in
some cases the terminology may be ambiguous to those who need to apply it in a
given scenario. In the case of the GPL licenses, perhaps the most contentious issue
is what constitutes a derivative work. The Free Software Foundation has a FAQ for
this purpose, which argues that any program that links (dynamically or statically) to
a GPL library should be considered a derivative work of the library [8].

Only the copyright owner can take a copyright license violation to court. It is
therefore valuable to know how they interpret any ambiguous section of the license.

4 Because the component does not have a specific license itself, this method poses difficulties for
those tracking the licenses of software, such as sourceforge.net.
5 http://www.perlfoundation.org



12 Daniel M. German and Jesús M. González-Barahona

5.5.1 Example: Linux GPL clarification

Linus Torvalds (the main copyright owner of the Linux kernel) has stated that pro-
grams that only use the services of the kernel are not considered derivative works
of the kernel [26]. Without this clarification some feared that any program that runs
under Linux would have to be licensed under the GPLv2, as Linux is licensed.

5.5.2 Example: Perl GPL clarification.

Larry Wall, the original author and major copyright owner of Perl includes a clar-
ification to Perl’s licensing terms. It states “my interpretation of the GNU General
Public License is that no Perl script falls under the terms of the GPL unless you ex-
plicitly put said script under the terms of the GPL yourself.” [29]. Otherwise some
feared that any Perl script would be a derivative work of the Perl interpreter (when
the script is executed it invokes functions in the interpreter).

5.6 Linking to code with an incompatible license

Sometimes there exists a library that GPLed software would like to link to, but its
license has one ore more clauses that are incompatible with the GPL. In some cases
it is possible to do so. Two remarkable cases are the OpenSSL exception and the
JDK CLASSPATH exception.

5.6.1 Example: The OpenSSL exception

A very interesting case surrounding the issue of license compatibility involves the
OpenSSL library. OpenSSL is a cryptographic implementation of the SSL and TLS
protocols, being FIPS 140-2 compliant (an important requirement for certain orga-
nizations which use cryptographic software). All of this makes it desirable for many
applications to link to it [17]. OpenSSL is released under the terms of both the
OpenSSL License and the SSLeay License. These licenses are incompatible with
the GPL licenses due to the requirement to acknowledge the name of the library
(these type of GPL-incompatible clauses are known as advertising clauses).

As a workaround, developers of GPLed software interested in linking to the
OpenSSL library have added an exception clause to the GPL:

In addition, as a special exception, the copyright holders give permission to link the code of
portions of this program with the OpenSSL library under certain conditions [...] You must
obey the GNU General Public License in all respects for all of the code used other than
OpenSSL. If you modify file(s) with this exception, you may extend this exception to your
version of the file(s), but you are not obligated to do so. [...]



A study of the reuse of software licensed under the GNU GPL 13

The program linking to the OpenSSL is still obliged to satisfy the conditions of
the OpenSSL license, but only for the OpenSSL code. For the rest the GPL license
applies.

5.6.2 Example: JDK and the CLASSPATH exception

Until recently Sun distributed its Java JDK under the Common Development and
Distribution License (CDDL), an OSI approved license that is not compatible with
any of the GPL licenses. Sun considered to change the license of the JDK to the
GPLv2, but there was a major roadblock: any program that runs under the Java Vir-
tual Machine (JVM) dynamically links to the runtime library (and to any library
found in the directories listed in the CLASSPATH environment variable). The run-
time library is part of the JDK, and would be licensed under the GPLv2 too. As a
consequence any program running under the JVM would need to be licensed un-
der the GPLv2. To avoid this issue Sun added the CLASSPATH exception to its
licensing terms for Java. This exception, authored by the Free Software Foundation,
explicitly states that linking to the runtime library (and other libraries located in the
CLASSPATH) is not considered a derivative work[9, 23]:

As a special exception, the copyright holders of this library give you permission to link this
library with independent modules to produce an executable, regardless of the license terms
of these independent modules, and to copy and distribute the resulting executable under
terms of your choice [...] If you modify this library, you may extend this exception to your
version of the library, but you are not obligated to do so. [...]

6 Discussion, Conclusions and Further work

We do not expect this list to be comprehensive. It is likely that other innovative
methods are used to combined software of incompatible licenses with the GPL.

Another important issue is that the methods herein presented have not been tested
in courts of law. We believe, however, that many of them have been drafted by
intellectual property lawyers who are probably well versed in the legal ramifications
of such methods (e.g. it is likely that IP lawyers for Nokia, MySQL AB, Sun, the
Free Software Foundation and the Mozilla Foundation have drafted and approved
the methods used by their corresponding organizations).

The license compatibility and license proliferation problems are important for
FOSS developers. The Free Software Foundation and the copyright owners of some
licenses have been trying to curve this problem by issuing new versions of their
licenses that make them compatible with the GPLv3. For example, the Artistic Li-
cense v2.0 and Apache License v2 are both compatible with the GPLv3.

In this paper we have studied and classified ways in which software released
under GPL licenses can be combined with components under other licences incom-



14 Daniel M. German and Jesús M. González-Barahona

patible with it. This study shows that many copyright owners who want or need to
use GPLed licensed software have to resolve GPL incompatibility issues.

In FOSS, the topic of license incompatibility is a complex, yet very important
one. Copying and reusing of code and combining FOSS components are two com-
mon practices in this community. But the resulting works could be impossible to
distribute if the incompatibility issues are not properly addressed. In many cases, if
the copyright owners take the appropriate measures, this problem can be alleviated,
and even managed in relatively simple ways.

License incompatibility is related to another major problem for the FOSS com-
munity: license proliferation. As more and more FOSS licenses are used, the
chances of license incompatibility when producing a compound work are larger and
larger, thus limiting the benefits of code reuse. A study of the relationship between
both issues is therefore of great practical interest for FOSS developers.

Knowing how many cases are affected (or potentially affected) by license incom-
patibility is not a simple task. Tools that help to determine the licenses involved in
a derivative work (by finding the licenses of the components and dependencies),
and identify potential incompatibility issues could help in this realm. Quantitative
analysis of number of packages affected, for instance, in GNU/Linux distributions,
could also shed some light on the matter.

Acknowledgments

The work of Daniel M. German has been funded by Hewlett-Packard to support the
FOSSology Project. The work of Jesus M. Gonzalez-Barahona has been funded in
part by the European Commission, under the FLOSSMETRICS project (FP6-IST-5-
033547) and by the Spanish CICyT, under the SobreSalto project (TIN2007-66172).
We want to thank the anonymous reviewers for their helpful comments.

References

1. Andrew Becerman-Rodau. Protecting Computer Software: after Apple Computer Inc. v.
Frankin Computer Corp., 714 F.2d 1240 (3d Cir. 1983) does copyright provide the best pro-
tection? Temple Law Review, 57(527), 1984.

2. Ken Coar. The licence proliferation project. Open Source Initiative, http://www.
opensource.org/proliferation, July 2006.

3. Free Software Foundation. The free software definition. http://www.gnu.org/
philosophy/free-sw.html.

4. Free Software Foundation. Gnu general public license version 1. http://www.gnu.org/
licenses/old-licenses/gpl-1.0.txt. Accessed Nov. 2008.

5. Free Software Foundation. Gnu general public license version 2. http://www.gnu.org/
licenses/old-licenses/gpl-2.0.txt. Accessed Nov. 2008.

6. Free Software Foundation. Gnu general public license version 3. http://www.fsf.org/
licensing/licenses/gpl.html. Accessed Nov. 2008.



A study of the reuse of software licensed under the GNU GPL 15

7. Free Software Foundation. Licenses. http://www.fsf.org/licensing/
licenses/, 2008. Accessed Nov. 2008.

8. Free Software Foundation. Frequently Asked Questions about the GNU Licenses. http:
//www.fsf.org/licensing/licenses/gpl-faq.html. Accessed Noc. 2008.

9. Free Software Foundation. GNU Classpath. http://www.gnu.org/software/
classpath/license.html, 2008. Accessed Sept. 2008.

10. Daniel M. German. Using software distributions to understand the relationship among free and
open source software projects. In 4th International Workshop on Mining Software Repositories
(MSR 2006), May 2007.

11. Daniel M. German, Jesús M. González-Barahona, and Gregorio Robles. A model to un-
derstand the building and running inter-dependencies of software. In ”Proc. 14th Working
Conference on Reverse Engineering”, pages 130–139, 2007.

12. Paul Goldstein. International Copyright: Principles, Law, and Practice. Oxford University
Press US, 2001.

13. Stanley Lai. The Copyright Protection of Computer Software in the United Kingdom. Hart
Publishing, 2000.

14. Nancy J. Mertzel. Copying 0.03 percent of software code base not “de minimis”. Journal of
Intellectual Property Law & Practice, 9(3):547–548, 2008.

15. MySQL AB. MySQL AB FLOSS License Exception. http://www.mysql.com/
company/legal/licensing/foss-exception.html, March 2007. Accessed
Dec. 2007.

16. MySQL AB. MySQL 5.0 Reference Manual. http://dev.mysql.com/doc/refman/
5.0/en/, 2008.

17. National Institute of Standards and Technology. Validated FIPS 140-1 and FIPS 140-
2 Cryptographic Moduples 2007. http://csrc.nist.gov/groups/STM/cmvp/
documents/140-1/1401val2007.htm.

18. Melville B. Nimmer and David Nimmer. Nimmer on Copyright. Matthew Bender & Company,
2002.

19. Nokia. Nokia Corporation Qt GPL Exception Version 1.3. http://doc.trolltech.
com/4.4/license-gpl-exceptions.html, 2008. Accessed Nov. 2007.

20. Open Source Initiative. Open Source Licenses. http://www.opensource.org/
licenses, accessed Nov. 2008, 2006.

21. Gregorio Robles, Jesus M. Gonzalez-Barahona, Martin Michlmayr, and Juan Jose Amor. Min-
ing large software compilations over time: another perspective of software evolution. In MSR
’06: Proceedings of the 2006 International Workshop on Mining Software Repositories, pages
3–9, New York, NY, USA, 2006. ACM Press.

22. Lawrence Rosen. Open Source Licensing: Software Freedom and Intellectual Property Law.
Prentice Hall, 2004.

23. Sun Microsystems. Free and Open Source Java. http://www.sun.com/software/
opensource/java/faq.jsp, 2008. Accessed Sept. 2008.

24. The Free Software Foundation. What is Copyleft? http://www.gnu.org/copyleft/,
accessed Nov. 2008.

25. The Open Source Initiative. The Open Source Definition. http://opensource.org/
docs/osd, 2006.

26. Linus Torvalds. Note to the GNU General Public License. ./COPYING file in the Linux kernel
version 2.6.23. Accesed Dec. 2007.

27. United States Copyright Office. Circular 92 Copyright Law of the United States of America
and Related Laws Contained in Title 17 of the United States Code, June 2003.

28. Mikko Valimaki. Dual Licensing in Open Source Software Industry. Systemes d’Information
et Management, 8(1):63–75, 2003.

29. Larry Wall. Perl Kit Version 5. ./README file in Perl version 5.6.10, available at cpan.org.
Accesed Dec. 2007.


