
Code siblings: technical and legal implications of copyingcode between
applications

Daniel M. German†, Massimiliano Di Penta‡, Yann-Gaël Guéhéneuc⋆, and Giuliano Antoniol⋆

† University of Victoria, Victoria, BC, Canada
‡ RCOST–University of Sannio, Benevento, Italy

⋆ PTIDEJ Team–SOCCER Lab., DGIGL,́Ecole Polytechnique de Montréal, QC, Canada
dmg@uvic.ca, dipenta@unisannio.it, yann-gael.gueheneuc@polymtl.ca, antoniol@ieee.org

Abstract

Source code cloning does not happen within a single sys-
tem only. It can also occur between one system and another.
We use the term code sibling to refer to a code clone that
evolves in a different system than the code from which it
originates. Code siblings can only occur when the source
code copyright owner allows it and when the conditions
imposed by such license are not incompatible with the li-
cense of the destination system. In some situations copying
of source code fragments are allowed—legally—in one di-
rection, but not in the other.

In this paper, we use clone detection, license mining and
classification, and change history techniques to understand
how code siblings—under different licenses—flow in one di-
rection or the other between Linux and two BSD Unixes,
FreeBSD and OpenBSD. Our results show that, in most
cases, this migration appears to happen according to the
terms of the license of the original code being copied, fa-
voring always copying from less restrictive licenses towards
more restrictive ones. We also discovered that sometimes
code is inserted to the kernels from an outside source.

Keywords: Code licensing, software evolution, clone
detection.

1 Introduction

A source code fragment (or a whole source code file) can
be copied from one system to another for several reasons,
including adding features already available in the other sys-
tem or fixing a bug using a known and robust implementa-
tion. Such a copying often happens when a developer works
on both systems or migrates from one system to the other.
Furthermore, to promote hardware adoption, companies of-
ten release and distribute the same code,e.g., a driver, for

different operating systems and environments. In all cases,
cross-system clones are introduced.

Usually, source code is distributed according to the terms
of a software license. Once the developer chooses to dis-
tribute her work with a particular license, she explicitly im-
poses limits on what can be done with the code: if and how
it can be used, modified, copied, distributed, and extended.

Software licenses may prevent or favor the migration of
code fragments in one or the other direction, or both. Once
having migrated, code fragments evolve constrained by the
new environment. In the following, we use the termsibling
to refer to a fragment of code that has been cloned from one
file in one system to another file in a different system. In
some cases, a sibling may span an entire file.

Then, we propose an analysis process to identify siblings
and to locate potential legal issues that affect them. Inves-
tigating such issues is relevant because, from a legal point
of view, two licenses can be incompatible. With incom-
patible licenses, code fragments cannot—legally—migrate
between systems. The compatibility of one license with an-
other (e.g., the new BSD License is compatible with the
GNU General Public License) creates a preferential flow of
code with the former license into the system with latter.

The primary contributions of this paper can be summa-
rized as follows: (i) we propose an approach relying on
clone detection across systems and license classification to
study the impact of software licenses on code siblings; (ii)
we provide evidence that a preferential flow exists from
FreeBSD/OpenBSD to Linux; (iii) we report unexpected re-
sults on the migration of third-party code from outside the
kernels into two or more kernels.

This paper is organized as follows. After a discussion of
related work in Section 2, Section 3 describes our study and
the process followed to extract data from the three kernels.
Section 4 presents the empirical study results, while Sec-
tion 5 provides a qualitative analysis of some examples of

siblings. Section 6 discusses the results along with threats
to validity and highlights open issues. Finally, Section 7
concludes the paper and outlines directions for future work.

2 Related Work

In this section we discuss related work related to clone
evolution analyses and and legal implications of cloning.

2.1 Studies on Clone Evolution

In recent years, the focus has shifted from the develop-
ment of algorithms for clone detection to the analysis of
clones and clone evolution. Early studies focused on the
evolution of clones in the Linux kernel [1, 17]. More recent
studies have examined the relationship between clone and
defects [16, 19], the origin and stability of clones [7, 13, 14],
the impact of clones on code changeability [18, 19], clone
maintenance [23], the life duration of clones and their ge-
nealogy [12], and whether clones constitutes an harmful
phenomenon [11].

We share with the aforementioned works the goal of im-
proving our understanding on clone evolution and manage-
ment. However, (i) we focus on clones across different sys-
tems instead of clones within a same system and (ii) we re-
late cloning with licensing, to study the impact of software
licenses on cloning across different systems and to identify
(if any) potential legal issues.

There are studies analyzing the evolution of commonal-
ities among systems belonging to the same family, for ex-
ample the studies done on the BSDs kernels by Fischeret
al. [3] and by Yamamotoet al. [26]. Our study shares with
them the idea of analyzing similar code across different sys-
tems. However, we are interested to investigate whether the
presence of similar code is influenced in any way by soft-
ware licenses.

2.2 Legal Implication of Cloning

From a legal point of view, software systems are pro-
tected using four different ways: trademarks, trade secrets,
patents, and copyright [2, 8, 15, 21]. In particular, copy-
right protect the expression of an idea. Consequently, many
systems can implement the same idea without violating the
different implementors’ copyright;e.g., there are many dif-
ferent kernels that implement the basic services required
to act as a Unix operating system. Every software system
is protected by copyright, unless its copyright owner has
placed it into the public domain. Anybody can copy and
reuse programs in the public domain. Otherwise, only the
copyright owner has certain exclusive rights over her cre-
ation such as making copies and preparing derivative works

[25]. Copyright law allows for the copying and using of por-
tions of copyrighted material under certain circumstances,
such as fair use in the United States or fair dealing in the
United Kingdom and Canada. However, copying code with-
out the approval of the copyright holder is in general pro-
hibited,e.g., a US court has ruled that even copying 27 out
of 525,000 LOCs can be considered copyright infringement
[20]. Thus, cloning of code fragments requires the explicit
permission from the copyright owner of the fragments.

Within an organization, cloning is not an issue because
all the code is typically owned by the organization. How-
ever, with the advent of free and open source software
(FOSS), it has become easy to copy systems (or portions
thereof) and incorporate them into other ones. An impor-
tant feature of FOSS licenses is that they encourage reuse,
either by using their systems as components or by reusing
their source code.

Each FOSS license places specific requirements that the
licensee should satisfy to be allowed to copy fragments of a
system into another one [9]. Given the scope of this paper,
we are primarily concerned with two types of licenses:per-
missive(also known as academic), such as the MIT/X11 and
BSD licenses, andreciprocal, such as the different versions
of the GNU General Public License. Permissive licenses
place minor constraints on the licensee and allow the inclu-
sion of fragments in a system under a different license;e.g.,
BSD licensed fragments can be included in proprietary sys-
tems. Reciprocal licenses require the system that includes
the fragments to be licensed under the same license;e.g.,
GPL-licensed fragments can only be included in systems li-
censed under the same version of the GPL.

It is important to highlight that there are several variants
of the BSD license. The original BSD, also known as 4-
clauses BSD, the new BSD, also known as 3-clauses BSD,
and the 2-clauses BSD. Code licensed under the original
4-clauses BSD cannot be included inside systems licensed
under the GPL. (See [22] for a detailed discussion of each
of these licenses). Most parts of the⋆BSD kernels use a
2-clauses BSD license while Linux uses primarily the GPL
version 2.

3 Empirical Study

The goal of the study is to understand to what extent
code siblings between different FOSS exist and whether
these siblings satisfy the conditions imposed by their open
source licenses. Thequality focusof the study is the proper
and consistent usage of open source licenses when code
fragments are copied from one system into another. The
results are of interest in theperspectivesof (1) researchers
who want to understand the extent of the siblings phe-
nomenon; (2) organizations participating in open source de-
velopment that are concerned with possible licensing issues;

Table 1. Characteristics of the three kernels.
Linux FreeBSD OpenBSD

Snapshot/release dates Jan, 18 2009 Jan, 23 2009 Jan, 27 2009
of .c files 10,343 13,699 3,175
of .h files 9,422 7,855 3,468
KLOC 7,262 8,456 2,301

and, (3) lawyers who want to advance the cause of intellec-
tual property rights.

The contextof the study are the siblings occurring be-
tween kernels of BSD operating systems (OpenBSD and
FreeBSD) and the Linux kernel. For FreeBSD, we down-
loaded from one of its CVS mirrors the latest snapshot avail-
able on Jan, 23 2009 and for OpenBSD the latest snapshot
available on Jan, 27 2009. For the Linux kernel, we down-
loaded the release 2.6.27.12 of Jan, 18 2009. Table 1 reports
the number of.c, .h files and the KLOC for the three ker-
nels. To track back the introduction of siblings, the CVS
repositories of FreeBSD and OpenBSD contained informa-
tion since 1993 and 1995 respectively, while the first Linux
kernel release analyzed (1.0.0) dates back to 1994.

3.1 Research Questions

This study aims at answering the following research
questions:

• RQ1: What kinds of open source licenses are used in
the three kernels?Answering this question is neces-
sary to understand in what cases a sibling from a kernel
to another could potentially create licensing issues.

• RQ2: How many potential siblings exist between the
BSD kernels and the Linux kernel?Answering this
question should confirm the importance of studying
and tracking clones across systems and their licenses.
In particular, we are interested to know how prevalent
is the (potential) copying of code fragments between
kernels.

• RQ3: What licenses are used by siblings and, if they
are different, why?When a code fragment is copied
from one kernel to another, we expect that it is done
without breaking its license. Thus, if siblings have dif-
ferent licenses, it is important to quantify how often
and understand why this happens because different li-
censes could lead to licensing issues.

3.2 Data Extraction and Analysis Process

We describe the steps followed to extract and analyze
the data necessary to answer the research questions in Sec-
tion 3.1.

3.2.1 RQ1: What kinds of open source licenses are
used in the three kernels?

RQ1 aims at identifying what are the licenses used in the
three kernels. To classify file licenses, we rely on the open
source license classifier FoSSology version 1.0.0 [6]. FoS-
Sology uses a pattern matching algorithm called the Binary
Symbolic Alignment Matrix (bSAM), inspired by an algo-
rithm used to detect protein changes in biomedical research.
FoSSology is capable of detecting 78 different license vari-
ants, classified in a hierarchy of licenses (for example, there
exist several kinds of Corporate licenses belonging to dif-
ferent companies, as well as different versions of the GPL).

We randomly checked some classifications of FoSSol-
ogy and discovered that it had two limitations. First, FoS-
Sology reported some files as without a license when in fact
they had one; when FoSSology failed to detect a license,
it labelled the file as “None”, resulting in many false pos-
itives. Second, some instances of the GPL were not de-
tected1. To deal with the first limitation, we extracted com-
ments from the files that FoSSology classified as “None”
and, for those containing the string “license”, we performed
a manual inspection. Using this heuristic, we were able to
discover 5 more licenses and add them to FoSSology set of
patterns. To deal with the second limitation, we searched
the comments of each file for the the terms “General Public
License”, “GPL License”, “GNU License” and, in case of
matching, we classified them as GPL. Finally, we marked
the remaining files as “Unknown”.

3.2.2 RQ2: How many potential siblings exist between
the BSD kernels and the Linux kernel?

RQ2 aims at understanding how many files in a kernel con-
tain code fragments similar or matching fragments in a dif-
ferent kernel. First, we identified, between file pairs, copied
code fragments in different systems using a clone detection
tool. We adopted theCCFinderclone detector [10] (in par-
ticular the newCCFinderX tool) as it allowed tuning the
clone detection parameters, recovering token sequence for
inspection, and accessing its intermediate representations.
Then, we used a series of heuristics to reduce the set of pos-
sible siblings:

1. We configured the clone detection tool to detect only
clones with a minimum size of 100 tokens (using the
-b 100 option) because we are interested in substan-
tial code siblings rather than small clones.

2. We focused our attention on.c files only, discarding
the header files because we are interested in implemen-
tation siblings rather than in finding modules having a
similar interface.

1We reported this bug and it will be fixed in the next release.

3. We restricted our attention to file pairs having a large
percentage of common code fragments. Given two
systemss1 ands2 (e.g., FreeBSD and Linux) and given
the set of file pairs ofs1 ands2 indicated asf1,i−f2,j,
where the first index indicates the system and the sec-
ond the file; for each pair(f1,i, f2,j), we computed the
percentagesp1,i, p2,j of f1,i cloned inf2,j and vice
versa. Given the distribution ofp1,i andp2,j , we fo-
cused our attention on file pairs for which bothp1,i and
p2,j are above a given thresholdt. The threshold was
computed based on average file size and percentiles
of code duplication distribution. Details regarding the
choice of the thresholds for our study are provided in
Section 4.

4. Starting from candidate files, we discarded cases
where one file ins1 has clones in several files ins2.
This often happens when code is first cloned from
one system to another and then further cloned in the
second system (or vice-versa). In that case, we can
consider that the sibling occurs on one file only, and
then the latter has several clones in the target system.
For example, the filesfadd.c is paired tosfsub.c,
sfmult.c, fsmult.c, and sfsqrt.c. If a file is
paired to too many files, it is likely to be cloning code
that is too generic to be relevant in our study. There-
fore, we removed any file that were paired to more than
five files. If a file was paired to five or less others, we
kept the pair with the file that contained the largest pro-
portion of clones. For instance, of the pairs in which
sfadd.c from OpenBSD was matched to files from
Linux, we selectedsfadd.c because it has the largest
clone proportion (with 95.9%). In all cases where a
file was paired with more than five files, the resulting
pair had the same file name in both systems (without
its path).

After applying these heuristics, we can say that the re-
maining clones are siblings because they exist in two differ-
ent systems.

3.2.3 RQ3: What licenses are used by siblings and, if
they are different, why?

Once having identified licenses for each file (RQ1) and sib-
lings (RQ2), we determined in which direction the code
fragment was likely to have been copied,e.g., whether the
fragment was copied from Linux (where a file could have
a GPL license) to FreeBSD/OpenBSD (where the file could
have a BSD license). We focused first on siblings for which
the detected license was different,i.e., cases where a frag-
ment was likely cloned from one system to another (or
shared between the two systems) under different licenses.

Then, we identified the time when the cloning happened by
applying the following method on all pairs of siblings.

1. We extracted all the siblings in the current revision of
the files (on which we ranCCFinderto address RQ2,
hereby indicated asrc). CCFinder returns the line
range of every sibling.

2. We retrieved previous revisions of the file
rc−1, . . . , r1. For BSDs, we checked them out
from their CVS repositories considering only the
HEAD development trunk. For Linux, we only
considered stable releases because its history before
the introduction of Git in April 2005 appears to lack
details. Linux previous history was imported into the
Git repositoryold-2.6-bkcvs but we have found
this history to be too incomplete for our study: large
numbers of changes are clumped into single commits
(probably the result of a merge in BitKeeper that lost
detailed history from branches). In essence, because
we used versions for Linux, our analysis of Linux is
coarser than the one from the BSDs.

3. We ranCCFinderbetween each cloned fragment con-
tained in a file and the previous revisions of the file to
assess the revision in which it was introduced: for each
clone, we stopped once we found a file revisionrc−k

where the cloned fragment did not exist and assumed
that it was introduced at revisionrc−k+1. To speed up
the process, the search was performed using a binary
search algorithm.

Consequently, we knew for each siblings the revision in
which the cloned fragment was introduced. It happened that
a sibling for a file pair(f1,i, f2,j) consisted of several code
fragments, introduced in different revisions. In such a case,
we considered the oldest revisions among the ones when
these fragments were introduced. Consequently, by know-
ing in which system the fragment was present first, we were
capable of tracking the direction in which the sibling was
introduced. When a siblings consisted of multiple cloned
fragments, we considered that the sibling has been intro-
duced when the oldest cloned fragment was introduced.

4 Results

This section reports results of our empirical study, an-
swering the questions in Section 3.1.

4.1 RQ1: What kinds of open source licenses are
used in the three kernels?

Figure 1 shows, for the three kernels, the numbers of.c
files having different licenses. It can be immediately noticed

6696

28

2699

88

350
266

0 0 0

91

0 0

33

13

32 20

2
0

8 4

0 0

3

0

2 2

1

0 0

2

0

1

0 0

1

0 0 0

75

2586

189

167

19
0

33

179 135

21

15
14

1

7

0 0

1

7

0 0

3

0

0

2

0 0

1

2

1

0

1

0

1 1

0

0

1

0

0

2421

138

295

14 0

179

0 0 4

59
25

0

12

0 0

14

2

0 0 0

3

0 0 0 0 0 0

1

0

1

0 0 0 0

1

0

6

0%

20%

40%

60%

80%

100%
G

P
L

B
S

D

N
on

e

M
IT

B
S

D
+

G
P

L

P
hr

as
e+

G
P

L

E
du

C
or

po
ra

te

C
C

D
L

P
hr

as
e

B
S

D
+

E
du

M
IT

+
B

S
D

G
P

L+
P

hr
as

e

M
IT

+
G

P
L

U
nk

no
w

n

M
P

L+
G

P
L

P
ub

lic
 D

om
ai

n

B
S

D
+

P
hr

as
e

X
.N

et
+

G
P

L

G
P

L+
C

or
po

ra
te

H
is

to
ric

al
+

B
S

D

M
IT

+
E

du

X
.N

et

C
P

L+
B

S
D

+
G

P
L

B
S

D
+

P
hr

as
e+

G
P

L

C
or

po
ra

te
+

G
P

L

F
re

e

M
is

cO
S

S

M
IT

+
P

hr
as

e

P
ub

lic
D

om
ai

n+
G

P
L

X
.N

et
+

B
S

D

B
S

D
+

G
P

L+
P

hr
as

e

B
S

D
+

P
ub

lic
D

om
ai

n

C
C

D
L+

P
hr

as
e

H
is

to
ric

al

M
IT

+
B

S
D

+
P

hr
as

e

F
re

e+
C

or
po

ra
te

H
is

to
ric

al
+

M
IT

Linux FreeBSD OpenBSD

Figure 1. Frequency of licenses in files containing clones. (Bars are normalized to 100%, numbers are the
actual numbers of files with a certain license, licenses are sorted from largest numbers of files to smallest. Occluded
numbers are always close to zero.)

that, for Linux, most of the files (6,696, 65% of the total)
have a GPL license and that there is also a high number of
files (2,699, 25%) without any license (Linus Torvalds has
stated that files without a license are under the GPL [24],
by default). Linux also contains files with multiple licenses
(among others, 350 with BSD and GPL). In FreeBSD, as
expected, the most widely used license is the BSD license
(2,586 files, 75%) and only 189 files (5%) do not have a
license. FreeBSD contains a number of files (179) with a
Corporate license (Intel licenses) and MIT (167). There are
a few cases of files with multiple licenses,e.g., 19 with BSD
and GPL, 15 with BSD and Educational, 14 with MIT and
GPL. In OpenBSD, BSD licenses dominate (2,421, 76% of
the total), followed by 295 files (9%) with a MIT license,
179 with an educational license and only 138 (84%) with-
out license. There are however some files with multiple li-
censes, in particular 59 with BSD and Educational, 25 with
MIT and BSD, and 14 with BSD and GPL.

4.2 RQ2: What is the number of potential sib-
lings between the BSD kernels and the Linux
kernel?

Table 2 reports the results of (i) the clone detection be-
tween the different kernels and (ii) the filtering process de-
scribed in Section 3.2 to detect potential siblings between
Linux and the BSDs. It shows that 2,208 clone pairs were
found between Linux and FreeBSD files, while only 749
between Linux and OpenBSD files. It also shows (1) the
number of files containing at least one sibling in Linux and
in the BSDs respectively, (2) the number of file pairs for
which there is at least one sibling between Linux and BSD
(412 between Linux and FreeBSD, 161 between Linux and
OpenBSD), and (3) the number of these pairs where the file

Table 2. Number of files and file pairs with
clones between Linux and the BSDs.

CCFinder Outputs
Metrics FreeBSD vs. OpenBSD vs.

Linux Linux
of Clone pairs 2208 749
Files Linux 296 100
Files BSD 289 94
File Pairs 412 161
File Pairs (same name) 189 47

Filtering Results
Metrics FreeBSD vs. OpenBSD vs.

Linux Linux
Files Linux 224 63
Files BSD 226 61
File Pairs 238 73
File Pairs (same name) 185 45

name is the same in the two kernels (189 between Linux and
FreeBSD, 47 between Linux and OpenBSD).

After having detected siblings, we first pruned out file
pairs for which the percentages of cloned tokens in one sys-
tem or the other was below the thresholdt. The threshold
value was chosen by observing the distribution of cloned to-
ken percentages, shown in Table 3, and obtained by ranking
files according to the percentage of cloned tokens that they
contain. In all cases, if we pruned out belowt = 33% per-
centile, we obtained for each file a percentage of cloned to-
kens equal or greater than 4%. On average, 4% of a file cor-
responds, in the systems we analyzed, to about 20 SLOCs.
This value could appear low, however it should be consid-
ered that, in the past, even copying 27 source code lines has
been considered a potential copyright violation.

We observed cases where a file in one system had a
large number of siblings in another. We only found one file

Table 3. Distribution of percentages of cloned
tokens. (The table shows average percentages of
cloned tokens for sets of files ranked according to
cloned token percentages and grouped in percentiles.)

Comparisons Percentiles Proportions Proportions
Linux BSD

Linux vs. 25% 2.9% 2.5%
FreeBSD 33% 4.7% 4.6%

50% 16.2% 16.1%
75% 66.3% 65.6%

Linux vs. 25% 2.7% 3.2%
OpenBSD 33% 5.2% 4.2%

50% 9.3% 8.6%
75% 59.3% 60.2%

Table 4. Linux vs. FreeBSD siblings with li-
cense change.

Siblings introduced first in FreeBSD and then in Linux
License License # of Before After
FreeBSD Linux Files 2002/01/01 2002/01/02
BSD GPL 8 1 7
BSD MIT 2 – 2
BSD None 2 – 2
Corporate BSD+GPL 89 79 10
GPL None 1 1 –
Phrase BSD+GPL 1 1 –
X.Net+BSD MIT 1 – 1
TOTAL 104 82 22

Siblings introduced first in Linux and then in FreeBSD
License License # of Before After
Linux FreeBSD Files 2002/01/01 2002/01/02
BSD+GPL Corporate 8 – 8
GPL BSD 17 – 17
GPL BSD+GPL 1 – 1
GPL CPL+BSD+GPL 1 – 1
MIT BSD 1 – 1
MIT+GPL None 2 – 2
None BSD 1 – 1
Phrase+GPL MIT 2 – 2
TOTAL 33 – 33

in Linux with a substantial percentage (above the thresh-
old t) of siblings with at most two files in FreeBSD. For
this reason, we decided not to further prune the results for
FreeBSD. In the case of OpenBSD, we found cases where a
file in Linux had a substantial percentage of clones with at
least five files in OpenBSD; the same happened in the op-
posite direction. We decided to prune these pairs. Results
of pruning are shown in the bottom part of Table 2

4.3 RQ3: How many siblings occur between file
pairs with different kinds of open source li-
censes?

Tables 4 and 5 count siblings with a different license in
two systems. The tables also distinguishes where the sibling
was introduced first,i.e., in Linux or FreeBSD/OpenBSD,
which could represent two different phenomena: (1) the

Table 5. Linux vs. OpenBSD: siblings with
license change.

Siblings Introduced First in OpenBSD and Then in Linux
License License # of Before After
OpenBSD Linux Files 2002/01/01 2002/01/02
BSD BSD+GPL 1 1 –
BSD MIT 2 – 2
BSD Unknown 1 1 –
BSD+GPL GPL 1 1 –
BSD+Phrase Phrase+GPL 1 – 1
MIT GPL 23 23 –
TOTAL 29 26 3

Siblings Introduced First in Linux and Then in FreeBSD
License License # of Before After
Linux OpenBSD Files 2002/01/01 2002/01/02
GPL BSD 3 – 3
TOTAL 3 – 3

code is introduced in one system first and then copied in
the other one, changing the license; or (2) the code is
introduced—often by the same developer or organization—
in both systems at different times. Our change history anal-
ysis cannot tell whether it is the former or the latter. Only a
qualitative, detailed analysis—we report some examples in
Section 5—would be able to pinpoint the real reason.

There are 35 siblings between OpenBSD and Linux (17
occurring first in Linux and 18 first in OpenBSD) and 91 be-
tween FreeBSD and Linux (62 occurring first in Linux and
29 first in FreeBSD), for which the license did not change.

Results for FreeBSD indicate that, in most cases, siblings
with different license appear first in FreeBSD and then in
Linux (104 cases). This could be explained in two ways:

1. A higher activity in FreeBSD in early periods of
our analysis time frame: as shown in the right-
most columns of the table, sibling occurring first in
FreeBSD are, in most cases, introduced before 2002.
Instead, all siblings occurring first in Linux are intro-
duced starting from 2002;

2. Cases where the code fragment is actually copied from
one system to the other can be due to the different li-
cense schemes that the two kernels adopt largely. In
fact, FreeBSD mostly uses the less stringent licenses
(e.g., BSD) while Linux tend to use the most stringent
one (GPL).

Also interesting to notice is the one case
of two files with substantial siblings, the files
gnu/fs/ext2fs/ext2linux ialloc.c in FreeBSD and
fs/ufs/cylinder.c in Linux: while the file in FreeBSD
contained a GPL license, the one in Linux did not have any
license. This discrepancy could be due to licensing issue
if the code was actually copied from FreeBSD (where it
appeared first) towards Linux.

Sometimes siblings appeared first in Linux and later in
FreeBSD. In 17 cases the Linux file has a GPL license and
the FreeBSD file has a BSD license, which is a potential
legal issue. In two cases, the Linux file has a Phrase+GPL
license and the FreeBSD a MIT license, and, finally, in two
cases, the Linux files have a MIT+GPL and the FreeBSD
file has no license. In other two cases, the Linux files (where
the cloned code fragments appeared first) have a GPL li-
cense and the FreeBSD files kept the GPL license, however
with the addition of BSD and CPL+BSD respectively.

Results for OpenBSD clearly indicate that, in presence
of siblings with different licenses, the sibling almost always
appeared first in OpenBSD and then in Linux, for the same
reasons as for FreeBSD. Only in three cases, the sibling ap-
peared in Linux first and then in OpenBSD, with a license
change from GPL to BSD. In all other 29 cases, the sibling
was introduced first in OpenBSD and the license changed
from MIT to GPL. Siblings occurring first in OpenBSD
often occurred before 2002, while those occurring first in
Linux are dated from 2002 beyond.

5 Qualitative Analysis

In this section, based on the quantitative information ob-
tained by answering the research questions and on other
sources of information (e.g., commit logs, mailing lists),
we provide a qualitative interpretation for some interest-
ing cases of siblings with inconsistent license usage. Only
a qualitative analysis could indicate whether the code was
copied from a system to another or whether, instead, third-
party code was made available, at different times, in two
systems (e.g., a driver coming from industry).

5.1 Drivers for SCSI AIC7xxx

The implementation of the drivers for the Adaptec
AIC7xxx series SCSI adapters dates back to 1994. It
was originally started in Linux. In 1995, some of
the Linux code is incorporated into an OpenBSD driver,
shortly before NetBSD forks from OpenBSD. In 1996, the
NetBSD driver is also ported to FreeBSD. For some time,
its author maintains the differences required by the two
BSD kernels via#if defined(FreeBSD) and #if

defined(NetBSD). In 1997, a mailing list is created
in FreeBSD to unify the efforts of people in the differ-
ent kernels and the major development of the driver seems
to happen in FreeBSD. Then, development propagates to
Linux, NetBSD, and OpenBSD in 2000. To this day, the
core development of these four drivers has been happening
in Linux and FreeBSD, under the supervision of the same
developer who started the FreeBSD port.

Figure 2 compares the same function in the drivers of
Linux and FreeBSD. As it can be seen, the functions are

almost identical except for the names of the functions that
they call (including the names of the functions themselves).
Also, oneif statement is different in both versions.

It is interesting that the automatic tags added by CVS,
Id, are maintained across kernels, helping to pin-point
the direction of the flow of code. For instance, revision 1.19
of OpenBSD originates in revision 1.40 of FreeBSD and
contains the following log: “new ahc driver. Adds support
for newer Adaptec controllers. This represents two months
of work.”. Its Id comments are:

FreeBSD: [...]aic7xxx.c,v 1.40 2000/01/07 [...]
OpenBSD: aic7xxx.c,v 1.19 2000/03/22 [...]

while the new driver for NetBSD comes from one revision
later and contains a similar log: “New ahc driver, a port of
Justin Gibbs’ FreeBSD driver. This adds support for the
U2W chips, and U160 controllers.”:

NetBSD: aic7xxx.c,v 1.42 2000/03/15 [...]
FreeBSD: [...]aic7xxx.c,v 1.41 2000/02/09 [...]

Similar Id tags can be found in the Linux driver too.

5.2 GPL Code in FreeBSD

xfs (xfs.org) is a file system developed by Silicon
Graphics. It was integrated into Linux in Sept 11, 2002
(located infs/xfs/). Code siblings of its source code (a
total of 48 files located in/sys/gnu/fs/xfs/) appeared
in FreeBSD in Dec 12, 2005. The license ofxfs is GPL.
Including xfs as part of the BSD kernel would require it
to be under the GPL too, which appears a contradiction to
the licensing terms of FreeBSD (licensed under the 2-clause
BSD license).

We found that FreeBSD has established a mechanism
to deal with this licensing issue. Compiling GPL-licensed
code into the kernel makes it “RESTRICTED”, hence it can
no longer be distributed in binary-only form nor its source
code be made available for mirroring (see “Ports with dis-
tribution restrictions” [4]).

5.3 A “Defect” in the License

The files sys/contrib/rdma/rdma cma.c and
drivers/infiniband/core/cma.c are examples of
siblings, the first in FreeBSD and the second in Linux.
In FreeBSD, the sibling appeared on May 05, 2008, and
underwent two changes only in the main trunk; in Linux,
it appeared on Jun 17, 2006, with 64 changes respectively,
including 8 changes after it appeared in FreeBSD. Surpris-
ingly, their current licenses are different. The Linux sibling
is licensed under the terms of the GPL v2 and the 2-clause
BSD licenses; the FreeBSD sibling, however, is licensed
under the terms of the new BSD license, the GPL v2, and

/* FreeBSD */
struct ahd_pci_identity *
ahd_find_pci_device(aic_dev_softc_t pci)
{
...
... ahd_pci_identity ...
...
... aic_pci_read_config ...
... aic_pci_read_config ...
... aic_pci_read_config ...
... aic_pci_read_config ...
... ahd_compose_id ...

/* If we are configured to attach to HostRAID
* controllers, mask out the IROC/HostRAID bit
* in the */
if (ahd_attach_to_HostRAID_controllers)

full_id &= ID_ALL_IROC_MASK;
[rest of function identical except
for naming conventions]

}

/* Linux */
const struct ahc_pci_identity *
ahc_find_pci_device(ahc_dev_softc_t pci)
{
...
const ... ahc_pci_identity ...
...
... ahc_pci_read_config ...
... ahc_pci_read_config ...
... ahc_pci_read_config ...
... ahc_pci_read_config ...
... ahc_compose_id ...
/* If the second function is not hooked up, ignore it.
* Unfortunately, not all MB vendors implement the
* subdevice ID as per the Adaptec spec, so do our best
* to sanity check it prior to accepting the subdevice
* ID as valid. */

if (ahc_get_pci_function(pci) > 0
&& ahc_9005_subdevinfo_valid(vendor, device, subvendor,
subdevice) && SUBID_9005_MFUNCENB(subdevice) == 0)

return (NULL);
[rest of function identical except
for naming conventions]

}

Figure 2. Excerpt from code siblings in the aic7xxx drivers o f Linux and FreeBSD. (For the sake of brevity
identical code has been replaced with “...”. Note how both functions use different naming conventions and one section
of the function, theif statement, is very different in both.)

the Commons Public License. In both cases, the licensee
is allowed to choose the license that applies (new BSD for
FreeBSD and GPL for Linux, presumably).

We explored the logs of both version control systems and
discovered that the original license (when the siblings were
introduced) was the one still present in FreeBSD. After the
code sibling appeared in FreeBSD, the license in its Linux
counterpart was changed, with the following log:

commit a9474917099e007c0f51d5474394b5890111614f
Author: Sean Hefty <sean.hefty@intel.com>
Date: Mon Jul 14 23:48:43 2008 -0700

RDMA: Fix license text

The license text for several files references
a third software license that was inadvertently
copied in. Update the license to what was intended.
This update was based on a request from HP.
[..]

Not only the Commons Public License was dropped but
the BSD license was also changed. It originally pointed
to a URL that listed the new BSD. The new version was
included verbatim, but was the 2-clauses BSD instead. The
log seems to imply that there was an error in the license,
and that such commit fixed it. Unfortunately, this fix has
not been propagated to FreeBSD.

6 Discussion and Open Issues

Code siblings exist. Code is moved from one system
to another, and, in some cases, from the outside to many

systems simultaneously. As shown in our study, the analysis
process that we presented in this paper provides an effective
means to find siblings between systems.

Perhaps one of the most interesting issues that we have
uncovered is the impact of licensing in the creation of sib-
lings. Most files in the kernels come with their own license,
and, as we have seen, their licensing terms vary dramati-
cally (from the tongue-in-cheek “Beer license” to the com-
plex GPL). We have found evidence that the developers of
the kernels are concerned to honor these licenses when they
create siblings—in particular when they are not the copy-
right owner. This an area that requires further work: what is
the impact of the license of a file in the creations of siblings
from it? Does the license of a file evolve due to the need to
create siblings from it? How does the licensing terms of the
file evolve?

We have found evidence also that copyright owners are
also interested in the existence of siblings. For instance,In-
tel contributes code directly to both FreeBSD and Linux. In
this case, the copyright owner takes the legal steps neces-
sary, either by contributing the different siblings under dif-
ferent licenses (BSD for FreeBSD and GPL for Linux) or
using a dual license (each file is licensed simultaneously as
BSD or GPL [5]). This is another area that is totally un-
explored: how developers are affected by the licenses of
their systems and vice-versa? How do the licenses affect
the work of the developers?

We also observed that the flow of siblings has changed
over the years. In the early days, siblings were flowing from

FreeBSD to Linux, now the tide seems to have changed di-
rection. This is perhaps not surprising. Today Linux is a
larger, more vibrant community. The rate of commits to
Linux is significantly larger than FreeBSD. OpenBSD ap-
pears to have an even smaller community than FreeBSD.
During January 2009, FreeBSD had—in the HEAD trunk—
937 file revisions, and OpenBSD 564, while Linux had
10,909. Further research should study whether developers
have moved from one kernel to the other.

We were surprised to find that the source code of
FreeBSD contains files under the GPL license (e.g., the im-
plementation of thexfs file system). The FreeBSD main-
tainers justify their decision by stating that, if a developer
compiles the kernel withxfssupport, then the resulting ker-
nel must be distributed under the terms of the GPL. By de-
fault,xfsis not compiled into FreeBSD (there exists a BSD-
licensed implementation of read-only support forxfstoo).

Managing siblings appears to be difficult. We have found
evidence that shows that developers have tried to maintain
a single source for two or more siblings, relying heavily
on #if C preprocessor constructs to support FreeBSD and
NetBSD (e.g., the driver for the SCSI AIC7xxx series).
Over time, this method was abandoned and, instead, several
sources are currently maintained (still under the supervision
of the same individual).

Another challenge is to recognize that some bugs are due
to the generic algorithm and functionality that the code im-
plements (e.g., support to a particular type of equipment)
and some are due to the environment in which they operate
(e.g., the OS calls that the driver needs to call to function
within such OS or particular services they should provide to
that specific OS). Bugs in the inherent nature of the driver
should be propagated to the other siblings, but not those ger-
mane to its native OS. We have observed that code siblings
are currently evolving faster in Linux than in the BSDs, but
research is needed to understand why, and if, when, and how
these changes make it to the other kernels. Other open is-
sues include studying: when does a bug that appears in one
sibling should be propagated to the other siblings? How
can bugs be tracked across systems belonging to different
organizations?

Downstream developers might be well aware of the
source of the siblings (they copied it), but upstream devel-
opers might not (they might not know that the sibling ex-
ists). Bug corrections might never be propagated to the sib-
ling, no matter how critical they are. The example in Sec-
tion 5.3 is a good example where the license of the upstream
code sibling was properly changed, but never the one of the
downstream one. We believe that these challenges make the
management of siblings a topic worth researching.

6.1 Threats to validity

This section briefly describes threats to validity that can
affect our study. Threats toconstruct validityconcern the
relation between theory and observation. This kinds of
threat are mainly related to the errors introduced by our
measurement instruments. First, we rely on the effective-
ness of the widely used clone detectorCCFinderX. To limit
the presence of false positives, we use a set of heuristics
(see Section 3.2) to restrict our focus on the most substan-
tial siblings. As reported in [6], the license classification
performed by FoSSology could have some imprecision. Fi-
nally, the way we trace back clone fragments to determine
their introduction depends on the effectiveness of clone de-
tectors and, although they were already used for similar
tasks,i.e., to perform origin analysis [7], we cannot guar-
antee the result accuracy. In particular, tracing siblingsin
time is more imprecise for the Linux kernel wrt. FreeBSD
and OpenBSD, as in the first case it was done at release
level rather than at file level. Also, we did not handle file
renaming or refactoring, we plan to do it in future work.

This is mainly an exploratory study, thus we are not par-
ticularly concerned with threats tointernal validity. This
means that, although we found some relations between li-
censes and code siblings across projects, we cannot claim
causation. Also, to answer our research questions we do not
need to test particular hypotheses using statistical tests, thus
we are not concerned with threats toconclusion validity.

External validity threats concern the generalization of
the findings. Our study focuses (i) on siblings between
specific systems,i.e., two BSD operating system kernels
(FreeBSD and OpenBSD) and Linux. Other systems,
in particular systems belonging to different domains, are
worthwhile of being considered to increase the external va-
lidity of our findings and to established firmly causality.

7 Conclusion

This paper proposed an analysis process to study code
siblings across systems under different licenses and re-
ported an empirical study on issues related to siblings aris-
ing in the OpenBSD, FreeBSD, and Linux kernels.

Results indicate that siblings occur between different
kernels and that they often tend to occur mainly in spe-
cific directions. While migration from BSDs to Linux is
frequent, the opposite was significantly less frequent: this
is mainly due to constraints imposed by licenses. In addi-
tion, we also show that code fragments migrated from third-
parties into Linux and BSDs. A deep, qualitative analysis of
some cases of siblings suggested that developers take care
of licensing issues when migrating code: often by creating
files with dual licenses (e.g., BSD+GPL).

Our findings emphasize the need for automatic tools to
check the consistency of sibling licenses to avoid licensing
issues, assure that cloning happens between compatible li-
censes, and make sure that siblings share the same license.
Examples, such as thexfsfile system tainting FreeBSD ker-
nel and preventing code and binary distribution, Adaptec
aic87xxx driver, development migrated across kernels
with multiple license changes, andrdma cma.c, cma.c,
with incompatible licenses, underline the relevance of the
research questions addressed in this paper.

Future work aims at investigating the impact various
factors—such as licenses and developers—on siblings and
the effect of license change/evolution.

8 Acknowledgment

We thank Bob Gobeille from the FoSSology Project for
his invaluable help with using FoSSology license detector.
We thank Dr. John Aycock, who was a contributor to the
Linux AIC7xxx driver, for his description of its early his-
tory. D. German was supported by the National Sciences
and Engineering Research Council of Canada. G. Anto-
niol was partially supported by the Natural Sciences and
Engineering Research Council of Canada (Research Chair
in Software Evolution #950-202658).

References

[1] G. Antoniol, U. Villano, E. Merlo, and M. Di Penta. An-
alyzing cloning evolution in the Linux kernel.Information
and Software Technology, 44:755–765, Oct. 2002.

[2] A. Becerman-Rodau. Protecting Computer Software: after
Apple Computer Inc. v. Frankin Computer Corp., 714 F.2d
1240 (3d Cir. 1983) does copyright provide the best protec-
tion? Temple Law Review, 57(527), 1984.

[3] M. Fischer, J. Oberleitner, J. Ratzinger, and H. Gall. Mining
evolution data of a product family. InProceedings of the
2005 International Workshop on Mining Software Reposito-
ries, MSR 2005, USA, May 17, 2005. ACM, 2005.

[4] FreeBSD Documentation Project. Ports with distribution
restrictions. http://www.freebsd.org/doc/en/books/porters-
handbook/porting-restrictions.html. Accessed Apr. 2009.

[5] D. M. German and A. E. Hassan. License integration pat-
terns: Addressing license mismatches in component-based
development. InProceedings of the International Confer-
ence on Software Engineering, 2009. To appear.

[6] R. Gobeille. The fossology project. InFith International
Workshop on Mining Software Repositories, MSR 2008,
Leipzig, Germany, May 10-11, 2008, Proceedings, pages
47–50, 2008.

[7] M. Godfrey and L. Zou. Using origin analysis to detect
merging and splitting of source code entities.IEEE Transac-
tions on Software Engineering, 31(2):166–181, Feb. 2005.

[8] P. Goldstein.International Copyright: Principles, Law, and
Practice. Oxford University Press US, 2001.

[9] Jacobsen v. Katzer, No. 2008-1001 (Fed. Cir. 8/13/2008).
U.S. Court of Appeals for the Federal Circuit, 2008.

[10] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code.IEEE Transactions on Software Engi-
neering, 28(7):654–670, July 2002.

[11] C. Kapser and M. W. Godfrey. ”cloning considered harmful”
considered harmful: patterns of cloning in software.Empir-
ical Software Engineering, 13(6):645–692, 2008.

[12] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empiri-
cal study of code clone genealogies.ESEC/FSE, 30(5):187–
196, 2005.

[13] J. Krinke. A study of consistent and inconsistent changes to
code clones. InWCRE ’07: Proceedings of the 14th Working
Conference on Reverse Engineering, pages 170–178, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[14] J. Krinke. Is cloned code more stable than non-cloned
code? InSCAM 08: Proceedings of the Working Confer-
ence on Source Code Analysis and Manipulation, pages 57–
66, Washington, DC, USA, 2008. IEEE Computer Society.

[15] S. Lai. The Copyright Protection of Computer Software in
the United Kingdom. Hart Publishing, 2000.

[16] Z. Li, S. Lu, and S. Myagmar. Cp-miner: Finding copy-
paste and related bugs in large-scale software code.IEEE
Trans. Softw. Eng., 32(3):176–192, 2006.

[17] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Analysis
of the linux kernel evolution using code clone coverage. In
MSR ’07: Proceedings of the Fourth International Workshop
on Mining Software Repositories, page 22, Washington, DC,
USA, 2007. IEEE Computer Society.

[18] A. Lozano. A methodology to assess the impact of source
code flaws in changeability and its application to clones.
In ICSM 08: Proceedings of the International Conference
of Software Maintenance, pages 424–427, Washington, DC,
USA, 2008. IEEE Computer Society.

[19] A. Lozano, M. Wermelinger, and B. Nuseibeh. Evaluating
the harmfulness of cloning: A change based experiment. In
MSR ’07: Proceedings of the Fourth International Workshop
on Mining Software Repositories, page 18, Washington, DC,
USA, 2007. IEEE Computer Society.

[20] N. J. Mertzel. Copying 0.03 percent of software code base
not “de minimis”. Journal of Intellectual Property Law &
Practice, 9(3):547–548, 2008.

[21] M. B. Nimmer and D. Nimmer. Nimmer on Copyright.
Matthew Bender & Company, 2002.

[22] L. Rosen. Open Source Licensing: Software Freedom and
Intellectual Property Law. Prentice Hall, 2004.

[23] S. Thummalapenta, L. Cerulo, L. Aversano, and
M. Di Penta. How clones are maintained: an empiri-
cal study.Emp. Soft. Engineering, 2009 (to appear).

[24] L. Torvalds. Re: GPL V3 and Linux - Dead Copyright Hold-
ers.http://lkml.org/lkml/2006/1/27/339, Jan 2006.

[25] United States Copyright Office. Circular 92 Copyright Law
of the United States of America and Related Laws Contained
in Title 17 of the United States Code, June 2003.

[26] T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue.
Measuring similarity of large software systems based on
source code correspondence. In6th Int. Conf. on Product Fo-
cused Software Process Improvement, PROFES 2005, Oulu,
Finland, June 13-15, 2005, pages 530–544. Springer, 2005.

