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Abstract

Libre (free / open source) software development is a
complex phenomenon. Many actors (core developers, ca-
sual contributors, bug reporters, patch submitters, users,
etc.), in many cases volunteers, interact in complex pat-
terns without the constrains of formal hierarchical struc-
tures or organizational ties. Understanding this complex
behavior with enough detail to build explanatory models
suitable for prediction is an open challenge, and few re-
sults have been published to date in this area. Therefore
statistical, non-explanatory models (such as the traditional
regression model) have a clear role, and have been used in
some evolution studies. Our proposal goes in this direction,
but using a model that we have found more useful: time se-
ries analysis. Data available from the source code manage-
ment repository is used to compute the size of the software
over its past life, using this information to estimate the fu-
ture evolution of the project. In this paper we present this
methodology and apply it to three large projects, showing
how in these cases predictions are more accurate than re-
gression models, and precise enough to estimate with little
error their near future evolutions.

1 Introduction

Libre software1 projects are usually based on a commu-
nity of many different actors, ranging from core developers
to casual contributors, and even users (who may contribute
for instance with bug reports). Most of them behave ac-
cording to their own interests, in many cases on a volunteer
basis. The community formed by those actors shows some
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1In this paper we will use the term “libre software” to refer both to “free

software” (as defined by the Free Software Foundation) and “open source
software” (as defined by the Open Source Initiative).

structure [8, 22] with different levels of involvement and ex-
pertise that may change over time. The management of the
project is usually distributed (to some extent), and decisions
are difficult to impose, since no formal organizational links
or hierarchies are recognized by all the actors. Therefore,
developers can not be compelled to do some tasks if they do
not want to (even if those tasks are urgent): they may be in-
volved in non fundamental activities, while not contributing
to some others with higher priority for the project. There is
also usually a lack of predefined requirements, undetailed
designs and absence of interprocess documentation [27].
Together with volunteer contributors, some others hired by
companies can also be present, in some cases with their own
agenda, which usually complicates the picture even more.

In many cases, and despite the lack of apparent plans,
these forces and interests result in reliable and mature soft-
ware which satisfies the needs of many users. Many libre
software projects grow continuously over time, and they
seem to satisfy most of the requirements of their users.
Well-known examples are the Apache web server, the Linux
kernel or the Mozilla Firefox web browser.

The problems for forecasting the evolution of the prod-
ucts produced by those projects are clear. If forecasting
is already a risky business in traditional software devel-
opment, where the environment is more constrained, it is
even more difficult in these more complex scenarios. How-
ever, having a predictive model is undoubtedly a fundamen-
tal tool for those interested in the future evolution of those
products.

There are several studies proposing models for how cer-
tain aspects of libre software products evolve, in some cases
including prediction capabilities [3, 10, 26]. However, they
fail to provide a comprehensive view of the evolution, prob-
ably due to the inherent complexity of the phenomenon
and the many different interactions among involved actors.
Each individual decision, even when based on self-interest,
may seem to the observer as a random event. Therefore, if
we focus only on the “low-level” interactions of the commu-
nity, it is difficult to find meaningful results for the global
landscape.
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On the contrary, if we look at the project from a macro-
scopic perspective, the overall behavior is not random. Ex-
plaining it with a theoretical model may be difficult, but
making predictions based on statistical methods may be fea-
sible (as predicting how individual actors will behave in the
stock market is difficult, while several statistical methods
may be used to predict the quotation of a stock value). In
the field of software evolution, the usual statistical models
for this kind of prediction are based on regression analysis.
We have followed this approach using a model based on

time series analysis (instead of regression). For the purpose
of this study we have used the size of the system as the main
parameter, but this methodology can be used with other evo-
lution metrics. This proposed methodology has also auto-
mated, making the study of a large set of projects and the
validation of results straightforward. For the three projects
analyzed we found that time series are better are predicting
their growth than regression modeling.
Forecasting the near future of a libre software project

may be a very useful tool both for the libre software
project itself as for those organizations interested on the
project. First of all, predicting growth could be used to pre-
dict effort, by applying effort estimation methods such as
COCOMO[5]. Although we apply in this paper the method
to the overall size of the system, it could be also applied to
the size of a particular module; for instance, if a company
has developers working on a particular module, it could
be possible to forecast the effort needed in the following
months in that module. Secondly, by estimating other evo-
lution parameters besides size, it would be possible to pre-
dict the quality attributes for the project (using a quality
model such as QSOS [2], OpenBRR [1], or OSMM [11]).
In the rest of this paper, we first present with more detail

the relevant related literature, to later present the methodol-
ogy we use and a description of the case studies, three well
known, large, libre software projects. After that, the re-
sults of applying our proposal are presented and discussed,
possible threats to validity are considered, and then some
conclusions are discussed.

2 Related work

Software evolution has been studied for 30 years now.
The seminal work by Lehman [19] stated the laws of soft-
ware evolution, which were revised in a later work [20].
Based on these laws, Turski proposed a model to predict
the growth of software projects [29], which was later gen-
eralized from a discrete model in difference equations to a
continuous differential equation model [30].
The model by Turski is based on two assumptions, de-

rived from the laws of software evolution:

• The growth of the system is inversely proportional to
the system’s complexity

• The complexity of the system is proportional to the
square of the size of the system (only in the discrete
model)

However, these assumptions are not fulfilled in most of
the libre software projects. From a first study by God-
frey [15], to the most recent works in the area [24], many
libre software projects have been found to be growing with
linear or superlinear patterns, in conflict with the first as-
sumption. This questions the validity of these models in the
case of some libre software projects.
The idea of using time series analysis to predict software

evolution is not new. Already in the period from 1985 to
1988 several papers [31, 32, 33] used statistical methods,
including time series analysis, to model software evolution.
For instance, in [33] time series ARIMA models are used to
predict the evolution in the maintenance phase of a software
project, using sampling periods of about one month.
Later, Kemerer and Slaughter [17] followed this line of

research proposing an ARIMA model which is able to pre-
dict the monthly number of changes of a software project.
As in the previous cases, Kemerer and Slaughter did not
obtain very good results applying time series, because the
phenomenon they were studying (number of changes) was
close to a random process.
Other authors have applied ARIMA models and time se-

ries methods specifically to predict the evolution of a soft-
ware project. In [6], the authors applied time series analysis
to predict the evolution of the Linux kernel. They took a
small subset of all the releases of Linux, and tried to predict
the size of future releases. The results were mostly satisfac-
tory, but for some releases the model gave results with large
relative errors. In [4], the authors applied the same methods
to model the evolution of software clones in a libre software
project.
In 2002, Fuentetaja and Bagert [13] also explored the use

of time series to obtain a model for the evolution of software
projects. However they did not provide a model to predict
the evolution but some tools which could be useful to obtain
such a model.
More recently, Dalle et al. [9] have applied signal pro-

cessing techniques to gather information from the time se-
ries obtained from versioning systems of libre software
projects. They were inspired by a previous work [16], which
applied time series analysis concepts to visualize historical
information from software projects.
However, time series methods do not seem to be the most

popular technique used by the research community for the
analysis of software evolution. Studies in this field prefer
statistical regression techniques, as is the case of [12, 15,
18, 24]. Regression models are convenient for extracting
the main trend from the evolution curves, but they fail to
predict the short term behavior of the project. We will show
in this paper that time series analysis are more suitable than
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regression models for software evolution analysis. Principal
component analysis has also been applied, in combination
with regression techniques in [23]. In that paper, a model
for the evolution of some operating systems (both libre and
non-libre software) is obtained.
There also some other non-statistical models proposed

to understand the evolution and behavior of the projects.
Robles et al. [26] propose a model based on the stigmergy
concept, which assumes that communication between indi-
viduals happens through stimuli caused by changes in the
environment, and not by directly exchanging information.
This model was applied to find out how developers join
projects, and how the work by these developers affect the
overall evolution of the project. Another model was pro-
posed in [3], which tried to describe all the processes found
in a libre software project by means of differential equa-
tions. The output of the model is the future values of some
parameters of the projects (among them, size). The authors
did not validate the results obtained with this model though.

3 Methodology

The main objective of this methodology is to study the
evolution in size of the products delivered by a libre soft-
ware development community over its history. As sampling
period we have chosen one day. For that task, we first need
to obtain the source code of the project for every day over
time. Instead of retrieving and measuring all the code at ev-
ery day (which leads to unnecessary measurement of those
files that have not changed since the last day), only files that
have changed during that period are retrieved and measured.
Once they are measured this way, results are aggregated for
each day to get the corresponding size for the whole project.
In order to measure size, the selected metric is Source

Lines of Code (SLOC), as defined in [7]:

A line of code is any line of program text that
is not a comment or blank line, regardless of the
number of statements or fragments of statements
on the line. This specifically includes all lines
containing program headers, declarations, and ex-
ecutable and non-executable statements.

To count SLOCs we use the SLOCCount tool2. We de-
cided to obtain this metric because it has been traditionally
used in the study of the evolution of libre software projects
(as an example, we cite [15, 24]).

3.1 Data collection

More in detail, we start by getting a copy of the CVS
repository of the project to be studied. Usually, researchers

2Available at http://www.dwheeler.com/sloccount

Figure 1. Steps followed to collect the data

have to query the original CVS repository of the project,
overloading the server and making the retrieval slow. Some-
times in this process, the project sets a ban as they interpret
that the repository is used for a different purpose than the
original one. In our case, all case studies offer the possi-
bility of obtaining their CVS repository using the CVSup
or rsync protocols. Therefore we can replicate the original
server to a local machine, and use it to perform our analysis.
This avoids overloading the project’s server, while it allows
us to repeat our study as many times as we want. In that
sense, the selected case studies are research friendly.

Once we had set up our local CVS server using the copy
of the repository, we used the softChange tool [14] to an-
alyze it. The steps followed to collect the data are sum-
marized in figure 1. We used the database generated by
softChange to obtain the information needed for every revi-
sion in the CVS. A revision in the CVS can be understood
as a point of change. Every time a change is committed
to the CVS, a new revision is created. The database ob-
tained using softChange contained a table with all the infor-
mation needed to identify the revision. In particular, from
this database we read the revision identification tag, the file-
name, a flag to find out whether or not the revision is in the
main trunk, a flag to find out whether or not the file was
removed in that revision, the date and the time for the revi-
sion. With the filename and the revision identification tag
we can obtain the original file from the CVS. With the help
of the flags, we can retrieve only files in the main trunk
(avoiding the files in parallel branches) and avoid revisions
where the files were deleted. And finally, the date and the
time allows us to sort all revisions in a chronological order.
Once we obtained these data, we proceeded to download all
revisions, and to measure them. We stored the results in a
new table in the database. Besides files deleted and not in
the main trunk, we ignored also those not written in the C
programming language, including header files which have
not been considered.

After this step, we had a table with all the revisions in
the CVS, and their sizes. To reconstruct the evolution of
the projects over natural time, from the table generated in
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the last step, we took the revisions for every day. If a file
had more than one revision in the given day, we obtained
only the last one (given by the hour field). We built a tree of
sources, initially empty. Then, we applied the same changes
to our tree than those that were made to the real source code
tree. Every leaf in our tree was not a file, but metadata con-
taining the size of the file and the information needed to
identify the file (revision id and file path). Therefore, for ev-
ery day, we had a tree containing the sources of the project
as they were in the considered day (that is why we ignored
deleted revisions, files that are deleted are not present any-
more in the sources tree). Hence, instead of the actual files
we had the values of their size. For every day we aggregated
the values of all files; i.e., the overall size was the addition
of the sizes of all files. By means of this procedure we ob-
tained the results for the whole source code tree on a daily
manner since the beginning of the project (see table 2).

3.2 Analysis

After the data collection step, we have a list of values
with the size of the case studies, in SLOCs, and a point for
every day since the beginning of the project until the last
considered date. This is, we have collected a time series of
the size for each case study.
These series can be predicted based on past values. In

order to achieve such prediction, the data needs to be inter-
nally correlated. Internal autocorrelation means that a value
in the future depends on some values in the past. Therefore,
a model based on past values can be obtained to forecast
the future. If there is no autocorrelation, this model can not
be obtained. The degree of internal autocorrelation in the
data is measured by the autocorrelation coefficients and the
partial autocorrelation coefficients.
To obtain the prediction of future values, we apply an

ARIMA model to each one of the cases. The steps fol-
lowed for the analysis of the series are summarized in fig-
ure 2. ARIMA models are linear combinations of past val-
ues of the series, weighted by some coefficients. To obtain
those coefficients we need to identify three different param-
eters: p, d and q. A seasonal component can be added to
the model. For instance, if we would know that any of the
projects is releasing a new version with a stable period (for
instance, a new release each six months), we could aggre-
gate that information to the model, in order to increase the
goodness of the prediction. However, we have not tried
to add a seasonal component to the models in the present
study.
The values for the parameters are obtained applying the

Box-Jenkins method [21]. The first requirement to apply
this method is that the data needs to be stationary. The
number of differences that must be applied to the data is the
value of the parameter d. In our case, as we will show in the

Figure 2. Steps followed in the time series
analysis of the data

q = 0 p = 0 p �= 0 q �= 0

ACF Tails off q significant Tails off
coefficients

PACF p significant Tails off Tails off
coefficients

Table 1. Criteria to select the values of p and
q in an ARIMA model. ACF means autocorre-
lation function. PACF means partial autocor-
relation function. Reproduced from [28].

Results section, all the series were close to linear, meaning
that stationary data can be obtained applying the first differ-
ence. In other words, d was 1 for all the case studies.
In order to obtain the values of p and q, we must inspect

the plot of the autocorrelation and partial autocorrelation
coefficients. The criteria to choose the values of p and q are
explained in table 1. To apply those criteria, we have to plot
both the autocorrelation coefficients function, and the par-
tial autocorrelation functions (these functions are described
in [21]).
However, if the data is noisy, the autocorrelation and par-

tial autocorrelation functions will not show a clear pattern,
and it will not be possible to apply the criteria shown in ta-
ble 1. In order to remove the noise of our samples, we have
applied kernel smoothing, as described in [28]. This kernel
smoothing filter makes the series smoother by introducing
some autocorrelation in the data. In the Results section, we
will discuss the influence of the degree of smoothing in the
validity of the model.
After the filtering, the autocorrelation and partial auto-

correlation functions will show a clear pattern. For instance,
see figure 6. In order to find out whether a coefficient is

408

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on January 12, 2009 at 14:37 from IEEE Xplore.  Restrictions apply.



significant or not, we consider that the coefficients are nor-
mally distributed, and discard those coefficients greater or
lower than two times the standard deviation. This is the re-
quirement generally accepted, and recommended by the lit-
erature [21, 28]. In the case of figure 6, all coefficients out-
side the region limited by dashed lines fulfill this require-
ment. Therefore, the autocorrelation coefficients function
slowly tails off, and the partial autocorrelation coefficients
drops to zero after 9 coefficients (in other words, there are
9 significant coefficients). Following the criteria of table 1,
this would mean p = 9 and q = 0. After choosing the val-
ues of the parameters, the model can be fitted, and so we are
able to obtain the predicted values. The Results section dis-
cusses the p and q and obtained values for all case studies.

4 Case studies

The described methodology has been applied to three
large, long-lived libre software projects. All of them are
older than ten years, therefore providing enough history to
study the evolution of the system. The selected projects are
described with more detail in the following subsections.
Table 2 contains a summary of the case studies, and the

period of time studied. We have studied the whole history
available in CVS for each of the projects. In all cases, we
have more than 10 years of history.

4.1 FreeBSD

FreeBSD is a Unix-like operating system descended
from AT&T UNIX via the Berkeley Software Distribution
(BSD) branch through the 386BSD and 4.4BSD operating
systems. The development of FreeBSD is lead by a com-
munity of volunteers. FreeBSD is released under the BSD
license, which is considered a libre software license.
FreeBSD is developed as a complete operating system.

The kernel, device drivers and all of the userland utilities,
such as the shell, are held in the same source code revi-
sion tracking tree (CVS). This is in contrast to GNU/Linux,
a similar but better-known operating system, in which the
kernel is developed by one set of developers; userland util-
ities and applications by others, such as the GNU project;
and all are packaged together by other groups and published
as Linux distributions.
We studied only the kernel of FreeBSD, included in the

src/sys module in the CVS repository. We ignored ev-
erything not part of the main development trunk.
Some large jumps were observed in the growth plots. Af-

ter careful inspection of the revisions in the CVS, we could
explain all jumps as part of the development and mainte-
nance process of FreeBSD. For example, May 29th 2001 the
module (sys/contrib/dev/acpica/Subsystem) was removed,
because it was old code for ACPI support. This module

was replaced by sys/dev/acpica on May 28th 2000, causing
a positive jump. Another example occurred in December
12th 2005, when read-only support for the XFS filesystem
was added to the kernel. As all files involved in these jumps
were part of the development process (they were written by
human developers and not automatically generated), we de-
cided not to remove them from our study.

4.2 NetBSD

NetBSD is a version of the Unix-like BSD computer op-
erating system. It was the second libre software BSD vari-
ant to be formally released, after 386BSD, and continues to
be actively developed. Noted for its portability and quality
of design and implementation, it is often used in embed-
ded systems and as a starting point for the porting of other
operating systems to new architectures. The development
of NetBSD is lead by a community of volunteers. NetBSD
is also released under the BSD license, and therefore libre
software.
When plotting the values of the metrics over time we

could not observe any jump, so no further investigation was
required.

4.3 PostgreSQL

PostgreSQL is an object-relational database manage-
ment system. The development of PostgreSQL has not been
lead by a single company, but is mainly driven by a com-
munity of developers and users, including some companies
backing it and offering services and support around the soft-
ware. The origins of PostgreSQL can be tracked to the In-
gres project started in the 1970s at the University of Cali-
fornia at Berkeley, but since its beginnings in the mid-80s it
has evolved on its own way. Although the design and con-
ception is clearly influenced by Ingres, not much code (if
any) from it persists in the current version.
From the whole source tree available in the CVS repos-

itory, we have studied only the code contained in the src
module. We have also ignored all code not included in the
main development trunk.
At first, we observed some strange large jumps (both,

positive and negative). After a careful look at the com-
mit logs and at the mailing lists, we found the reasons for
these gaps. First of all, two automatically generated C files
had been added to the CVS repository. Some time later,
they were removed. And again, they were added some
months later. As these files were not been written by de-
velopers directly (they are the output of using YACC, a
tool which automatically generates C code), we decided
to remove them from the sample. The affected files were
src/interfaces/ecpg/preproc/preproc.c (2758 SLOC in its
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Project First date Last date Months SLOC Num. of files
FreeBSD 1993-03-24 2006-06-05 161 1414641 2703

NetBSD 1993-03-21 2006-06-07 161 1999626 6243

PostgreSQL 1996-07-09 2006-07-18 122 289864 593

Table 2. Summary of the case studies. Size is shown both in SLOCs and number of source code files
(excluding header files) in the last date considered.
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Figure 3. Plots of SLOC over time for all
case studies, according to the restrictions
discussed in the Case Studies section.

last version) and src/interfaces/ecpg/preproc/pgc.c (16473

SLOC in its last version).
Another source of noise in our curves was the module

for ODBC support in PostgreSQL. The development group
for ODBC was different that for the main trunk of Post-
greSQL. However, all the code was included in the same
repository and module. At some point the ODBC module
was “branched” into an independent repository and was re-
moved from the main trunk of the CVS, causing a big neg-
ative gap in the figures. For this reason we determined that
it was reasonable to remove from our study any file that be-
longs to it (src/interfaces/odbc/*).

5 Results

In this section we describe the results obtained. We show
how we obtained the ARIMA models in order to forecast
the near future of the project, by applying the Box-Jenkins
method.
The first obvious graph is the evolution of the metric over

time, shown in figure 3 for all case studies.
The growth of all projects is very close to linear. When

correlating SLOC against number of days of lifetime, the

correlation coefficients are R2
= 0.9899 for FreeBSD,

R2
= 0.9945 for NetBSD and R2

= 0.9888 for Post-
greSQL. It seems that the linear regression models are quite
good. They are indeed; however, as we show at the end of
this section, even with those good correlation coefficients,
the time series model performs better than the regression
model when predicting the last year of history of the three
case studies.

Let us try now to obtain an ARIMA model for each one
of the case studies. As described in the Methodology sec-
tion, we need to identify the values for the three parameters
of the model: p, d and q. As the good linear regression co-
efficients show, the series are close to be linear. Therefore,
we can select d = 1 in order to get stationary data. To se-
lect p and q we need to plot the autocorrelation and partial
autocorrelation functions. If we try to do so with the orig-
inal data (this is, without any filtering), we do not obtain a
clear pattern in order to apply the criteria described in the
Methodology section (summarized in table 1). For instance,
figure 4 shows the autocorrelation and partial autocorrela-
tion coefficients for the first difference of the FreeBSD se-
ries; the coefficients are shown for the first ten lags, this is, it
shows the internal autocorrelation among the last ten points
of the series. The number of lags is not important, as long as
enough lags are shown in order to find out the exact pattern
of the plots. In the case of the autocorrelation coefficients
function, only the first coefficient is significant, and after
that lag, all coefficients suddenly drop to zero. In the case
of the partial autocorrelation coefficients, all coefficients are
very low, and we should discard all of them attending to the
criteria described in the Methodology section. What we are
seeing in figure 4 is that the noise is reducing the internal
autocorrelation of the series, and so any of the coefficients
is significant.

We need therefore to filter the original series in order
to remove the noise. Figure 5 shows the first difference of
the FreeBSD series before and after applying the filtering
process. The plot in the top of that figure is the original
data, the plot in the middle is the filtered series, applying a
kernel smoothing with a bandwidth of 10. The plot in the
bottom is the filtered series, with the same smoothing with a
bandwidth of 50. Smoothing removes some noise from the
series, and the trend in the data appears now much clearer.
We applied smoothing with a bandwidth of 50 to the series
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Figure 5. Original series and filtered series for FreeBSD
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Figure 4. Autocorrelation (left) and partial au-
tocorrelation (right) coefficients for the first
ten lags of the difference of the FreeBSD se-
ries (no filter applied).

of the three case studies.

After the filtering process, the pattern in the autocorre-
lation and partial autocorrelation functions is much clearer.
Figure 6 shows those plots. According to table 1, we would
choose p = 9 and q = 0, because the autocorrelation func-
tion slowly tails off to zero, and the partial autocorrelation
function drops to zero after 9 lags.

In the case of NetBSD, the pattern was the same with
6 significant lags in the partial autocorrelation coefficients.
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Figure 6. Autocorrelation (left) and partial au-
tocorrelation (right) coefficients for the first
ten lags of the filtered FreeBSD series (first
difference).

Therefore q = 0 and p = 6. In the case of PostgreSQL, the
pattern was the same with q = 0 and p = 7.
As we have said, to test the goodness of the obtained

models, we divided our series in two sets: the training set
and the test set. The training set was built with all series
but the last year. The last year was the test set3. The val-
ues obtained from the model were the first difference of the

3The test sets contained 321 days for FreeBSD, 326 days for NetBSD
and 361 days for PostgreSQL. The number of days is almost one year for
all cases.
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Case study MSRE Sd. dev.
FreeBSD 3.93 3.28

NetBSD 1.80 1.28

PostgreSQL 1.48 1.86

Table 3. Mean squared relative errors (MSRE)
and standard deviation of the squared relative
errors (Sd. dev.) for the time series models.

Case study MSRE Sd. dev.
FreeBSD 16.89 14.82

NetBSD 15.94 8.65

PostgreSQL 6.86 4.75

Table 4. Mean squared relative errors (MSRE)
and standard deviation of the squared relative
errors (Sd. dev.) for the regression models.

forecasted series. We made the inverse operation of the first
difference, and added the value of the actual series at the be-
ginning of the test interval. Then we compared these fore-
casted values with the actual values.

After fitting the time series model using the training set,
we predicted the next year, and compared the forecasted
values against the actual values contained in the test set. Ta-
ble 3 contains the mean squared relative errors for the three
case studies.

We repeated the same procedure with a linear model ob-
tained by statistical regression using least squares. We cor-
related SLOC against number of the days of lifetime, for
all the data but the last year (this is, we used the training
set for least squares regression). Then we compared the last
year forecasted with the regression model against the actual
values (the test set). For the case of PostgreSQL the cor-
relation coefficient with the training set was R2

= 0.9890

for FreeBSD, R2
= 0.9946 for NetBSD and R2

= 0.9856

for PostgreSQL. Table 4 shows the mean squared relative
errors for the three case studies.

When comparing table 4 to table 3, we can easily see that
the relative errors are greater using linear regression models
than time series models.

Therefore the time series based ARIMA models can pre-
dict the growth in the next year of a project with lower error
than regression models. We want to remark the high corre-
lation coefficients obtained with linear models. Even with
those quite good correlation coefficients, the ARIMA mod-
els perform better than the regression models.

6 Threats to validity

6.1 Limited number of case studies

This study has been performed using only three case
studies. The three case studies are quite similar among
them: long lived projects, large software systems. Two of
them are operating system kernels with the same historical
origin (BSD); the other case study is a database manage-
ment system.
The results may vary if there is not enough history in

order to fit the models, this is, if the projects are not long
lived. Although the internal memory of the models pre-
sented in this papers is low (about one week, as we discuss
in the next subsection), the fitting process (this is, to ob-
tain the values of the coefficients of the model based on the
past data and the values of the parameters p, d and q) may
throw different results for these coefficients if the size of the
set used to fit the model is smaller. The size of the system
is another important factor: the issues that arise in a large
project are not the same than in a small project. Moreover,
we have selected a metric (size measured in SLOCs) which
is the result of the aggregation of many different stochastic
processes. This aggregation of stochastic processes may be
not as easily predicted if the size of the system were smaller,
because the uncertainty would be greater.
We think that this methodology could be also applied

to other large, long lived, libre software projects, but we
have not tested the results with other case studies. In or-
der to predict size, the data collection process and the level
of granularity do not affect the results of the model in our
opinion. This could be different with other metrics or pa-
rameters though.
On the other hand, if the projects are not long lived,

and their size is not large, and if the sort of studied files is
also different, the performance of a time series model may
greatly vary.

6.2 Filtering and fitting

The filtering process may affect also the performance of
the time series models. Although we have compared the
predictions against actual values (this is, non filtered), the
filtering process adds internal autocorrelation to the series.
If the autocorrelation added to the series is greater than nec-
essary, the result would be probably an overfitted model.
However, we do not think that is the case in this study. The
parameters of the models are related to the internal mem-
ory of the model. As the period between measurements is
one day, and the parameters were around 6, 7, the internal
memory of the model is about one week (this is, the value
today is directly related to the values in the last week). A
periodicity of one week fits quite well with the phenomenon
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that we are studying (software development and evolution).
Another evidence of the suitability of the model is the com-
parison against actual values: the test set. That set of values
was not used at all to obtain and fit the models.
The selection of the training and test sets will make the

mean squared relative error values change. However, we
have tried different sets, and in all of them the time series
models performed better than the regression models. There-
fore, we do not think that our conclusions are affected by the
selection of the training and test sets.

6.3 Data collection

The data collection process may be also a threat to va-
lidity. We have considered only C files, excluding header
files. The results may vary if we also consider other sort of
files, or if we take all of them (this is, documentation and
other files as well) as they show other behaviors [25]. We
have removed some files from the sample of one of the case
studies, because those files were not written by human de-
velopers. In other words, the statistical distribution of the
size of the files can be different if we change the sort of
files studied, or if we consider also files that are automati-
cally generated. This difference in the statistical distribution
of the size across the whole sources tree may affect the suit-
ability of the time series methods in order to forecast the
near future of the projects.

7 Further work

ARIMAmodels may include also a seasonal component,
in order to increase the forecasting performance. Some libre
software projects are known to release new versions with
a fixed schedule4. This information could be added to the
models. In the case of our case studies, the time between re-
leases is not constant. However, as figure 5 seems to show,
there is a seasonal pattern in the data. We plan to find out
if that pattern is related to any event in the projects (for in-
stance, a new release of the project), and incorporate that
information to the ARIMA models.
The growth curves for the three case studies present a lin-

ear profile. ARIMA models can predict any time series, not
necessarily linear. Actually, as we are comparing against
regression models, linearity would be a factor which would
help regression models to perform better. In any case, we
should test the goodness of time series models against re-
gression models with other sort of profiles (such as superlin-
ear, which is found in some well known large libre software
projects).
We intend to compare also this methodology against

other predictive methods. As an example, we cite [23] that

4For instance, the GNOME project releases a new version every 6
months.

studied the evolution of operating systems using principal
component analysis in combination with regression tech-
niques.
We also intend to apply this methodology to other pa-

rameters of the project, in order to test the performance of
the model for effort prediction, to predict the quality at-
tributes of the project by means of a quality model such as
QSOS, OpenBRR, or OSMM.

8 Conclusions

In this paper we have presented a methodology for pre-
dicting the near future of the size a software project based
on time series analysis. It uses information available in
source code management repositories, and can be fully au-
tomated, performing an analysis based on an optimal num-
ber of measurements (which allows for sampling periods as
small as one day).
This methodology has been used to measure and pre-

dict the size of three large libre software projects over their
whole history (more than 10 years), with a sampling period
of 1 day. The data was obtained from publicly available
sources (the CVS repositories of the projects).
The Box-Jenkins method was applied to obtain a predic-

tive model, which implied filtering the series. These filtered
series were the input to our ARIMA models. To validate
them, we used as input all data except those corresponding
to the last year. We then used the actual values found for
the last year to compare with the results of the prediction
models. We repeated the same procedure applying linear
regression by least squares. The linear models, in spite of
the high correlation coefficients, performed worse than the
ARIMA models.
Therefore, we consider time series analysis as a good

candidate to estimate the future evolution of libre software
products, better than regression models, at least for our case
studies. Although we applied our methodology to the time
series of SLOC, this methodology can be applied to predict
the evolution of any other parameter of the project.
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